Pharmacokinetics and pharmacodynamics for efficacy and prevention of resistance

P. M. Tulkens, MD, PhD

Unité de Pharmacologie Cellulaire et Moléculaire
Université Catholique de Louvain, Brussels, Belgium

International Society of Anti-infective Pharmacology

www.md.ucl.ac.be/facm www.isap.org

Melbourne, Victoria, April 6th, 2001
The ideal antibiotic ...

the molecule

brilliant and clear solutions

patient’s cure

chemistry microbiology therapy
Will it always be ideal?
Main causes of antibiotic failures...

- **False failures**
 - erroneous diagnosis
 - underlying disease uninfluenced by antibiotics
 - unjustified lack of patience
 - inactivation of the antibiotic

- **Failures related to the patient**
 - compliance failure (broadly speaking)
 - inappropriate administration route (broadly speaking)
 - immunodepressed hosts

- **Pharmacological failures**
 - unsufficient amount or drug inappropriately administered
 - unsufficient attention paid to pharmacodynamic parameters
 - in situ inactivation or lack of drainage

- **Failures related to the micro-organism**
 - wrong pathogen
 - resistance acquired during treatment
 - unsufficient bactericidal activity, bacterial persistence
 - inoculum effect

Adapted from J.C. Pechère (*In Schorderet et coll.*, 1988, 1993, 1998)
PK / PD ...

- **Pharmacokinetics**
 What the body does to the drug …
 - absorption
 - metabolism
 - elimination

- **Pharmacodynamics**
 What the drug does to the body …
 - direct effects
 - post-drug effects
 - selection effects

Adapted from H. Derendorf, 2d ISAP Educational Workshop, 2000
From PK to PD ...

Pharmacokinetics
conc. vs time

Pharmacodynamics
conc. vs effect

PK/PD
effect vs time

Adapted from H. Derendorf, 2d ISAP Educational Workshop, 2000
Pharmacokinetic/Pharmacodynamics in Drug Development and Evaluation of Efficacy

The combination of

- in vitro modelling,
- proper design of animal model experiments,
- pharmacokinetic information on patients in clinical trials

allows an in depth understanding of which aspects of drug exposure are most closely linked to

- therapeutic outcomes (successes as well as failures !!)
- quantifiable/predictable toxicity hazards

1st ISAPDiscussion Workshop with Regulatory Authorities, Rockville, MD, March 1st, 1999 (http://www.isap.org)
PK/PD - Potential Benefits

- Facilitate Early Selection of Lead Drug Candidate (e.g., Pre-Clinical Screening)
- Select Appropriate Dosage Regimen (e.g., Phase 1/2)
- Better Understand Clinical / Microbiological Outcome (e.g., Phase 3)
- More Efficient Drug Development Program

July 1998
Pharmacokinetic/ Pharmacodynamics and antibiotic resistance...

Inadequate dosing of antibiotics is probably an important reason for misuse and subsequent risk of resistance.

A recommendation on proper dosing regimens for different infections would be an important part of a comprehensive strategy.

The possibility to produce such a dose recommendation based on pharmacokinetic and pharmacodynamic considerations will be further investigated in one of the CPMP working parties...

EMEA discussion paper on Antimicrobial resistance, January 3, 1999 -- EMEA/9880/99
PK/PD and drug development

A view from EMEA

Are PK / PD important in resistance?

- PubMed search on March 25th, 2001 for:
 - pharmacodynamics, and
 - pharmacokinetics, and
 - resistance, and
 - antibiotic*

1756 references...
Just a few of them...

 Pharmacokinetics and pharmacodynamics of fluoroquinolones in the respiratory tract.
 Wise R, Honeybourne D: “Pharmacokinetic and pharmacodynamic features are important predictors of the therapeutic efficacy of an antibiotic”.

- J Chemother 1999 Dec;11(6):426-39
 Antimicrobial action and pharmacokinetics/pharmacodynamics: the use of AUIC to improve efficacy and avoid resistance.
 Schentag JJ: “Resistance is also predictable from these parameters, fostering a rational means of using dosing adjustments to avoid or minimize the development of resistant organisms”.

 Clinical efficacy and antimicrobial pharmacodynamics.
 Wise R: “Changes in the susceptibility of bacterial pathogens and the availability of new antimicrobial drugs mean that physicians need to understand the underlying pharmacodynamics of each antimicrobial therapy”.

PK/PD & resistance April 6th, 2001
Pharmacokinetic/Pharmacodynamics in Drug Development and Evaluation

Who should take these points in consideration?

1. Industry: surely!
 ➔ efficacy both in short (efficacy) and long (emergence of resistance) terms
 this is what they already do at the research level ...

2. Clinicians: more and more
 ➔ optimizing therapy now and protect the future
 but they often feel alone or insufficiently informed ...

3. Regulatory bodies
 ➔ to better appraise new drugs and set guidelines
 but they wish to be certain that this is the correct way!
Pharmacokinetic/ Pharmacodynamics: What are the goals?

- Effectiveness
- Lack of adverse effects
- Prevention of resistance
PK/PD and effectiveness: patterns of antimicrobial activity (after WA. Craig, 2000)

1. Time-dependent killing and minimal to moderate persistent effects
 - Seen with all beta-lactams, clindamycin, macrolides, oxazolidinones and flucytosine
 - Goal of dosing regimen: optimize duration of exposure
 - **Time above MIC** is the major parameter correlating with efficacy
Correlation of Pharmacodynamic Parameters with Efficacy (after W.A. Craig *)

- Use neutropenic murine thigh-and lung-infection models
- Evaluate 20-30 different dosing regimens (5 different total doses given at 4-6 different dosing intervals)
- Measure efficacy from change in \log_{10} CFU per thigh or lung at the end of 24 hours of therapy
- Correlate efficacy with various pharmacodynamic parameters (Time above MIC, peak/MIC, 24-Hr AUC/MIC)

* 2d ISAP Educational Workshop, Stockholm, Sweden, 2000
Relationship Between Peak/MIC Ratio and Efficacy for Cefotaxime against *Klebsiella pneumoniae* in a Murine Pneumonia Model (after W.A. Craig *)

* 2d ISAP Educational Workshop, Stockholm, Sweden, 2000
Relationship Between 24-Hr AUC/MIC and Efficacy for Cefotaxime against *Klebsiella pneumoniae* in a Murine Pneumonia Model (after W.A. Craig *)

* 2d ISAP Educational Workshop, Stockholm, Sweden, 2000
Relationship Between Time Above MIC and Efficacy for Cefotaxime against *Klebsiella pneumoniae* in a Murine Pneumonia Model (after W.A. Craig *)

\[R^2 = 94\% \]

* 2d ISAP Educational Workshop, Stockholm, Sweden, 2000
Relationship between time above MIC and efficacy
For β-lactams, macrolides and TMP/SFX in otitis media

Fig. 1. Relationship between the percentage of time that serum levels exceed the MIC_{90} and the bacteriologic cure in otitis media caused by *S. pneumoniae* (open symbols) and beta-lactamase-positive and -negative *H. influenzae* (closed symbols). Data available for 10 beta-lactams, 2 macrolides and trimethoprim-sulfamethoxazole. The coefficient of determination was 0.57.

T > MIC must reach 50 %
β-lactams: at least 50% of the time above the MIC...

You must calculate the interval

\[C_t = C_0 \times e^{-kt} \]

Time between 2 administrations:

- \textit{dir.} proportionnal to the dose
- \textit{inv.} proportionnal to the half-life

Most betalactams have an half-life of approx. 2 h or less
PK / PD in action: what can you do with a model β-lactam *

<table>
<thead>
<tr>
<th>time (hours)</th>
<th>concentr. (mg/L) for a dose of 0.5 g</th>
<th>1 g</th>
<th>2 g</th>
<th>if given every 12h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50 % coverage</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>50</td>
<td>100</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>12.5</td>
<td>25</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>12</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>6</td>
<td>12</td>
<td>66 % coverage</td>
</tr>
<tr>
<td>10</td>
<td>1.5</td>
<td>3</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>0.75</td>
<td>1.5</td>
<td>3</td>
<td>100 % coverage</td>
</tr>
</tbody>
</table>

* adult 50 kg; single administration; 2h half-life; $V_d = 0.2$ l/kg
PK / PD in action

β-lactams: 1st practical approach ...

keep the interval but increase the unit dose...

If given every 12 hours (BID) you’ll need the following amounts to get 66% coverage at

MIC ≤ 1.5	250 mg	peak
MIC ≤ 3	500 mg	
MIC ≤ 4.5	750 mg	
MIC ≤ 6	1000 mg	
MIC ≤ 12	2000 mg	
MIC ≤ 32	4000 mg	

NOT OPTIMAL BECAUSE UNNECESSARY PEAKS !!!

25 mg/L

50

75

100

200

400
Improving β-lactam efficacy by reducing the interval

<table>
<thead>
<tr>
<th>time (hours)</th>
<th>concentration for</th>
<th>if given every 8 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.5 g</td>
<td>1 g</td>
</tr>
<tr>
<td>2</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>4</td>
<td>12.5</td>
<td>25</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>10</td>
<td>1.5</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>0.75</td>
<td>1.5</td>
</tr>
</tbody>
</table>

* single administration; 2h half-life; \(V_d = 0.2 \text{ l/kg} \)
PK /PD in action ...

β- lactams: 2d practical approach ...

- keep the dose but decrease the dose interval

<table>
<thead>
<tr>
<th>Frequency</th>
<th>MIC ≤</th>
<th>Peak</th>
</tr>
</thead>
<tbody>
<tr>
<td>every 24h</td>
<td>0.4</td>
<td>100</td>
</tr>
<tr>
<td>every 12h</td>
<td>6</td>
<td>100</td>
</tr>
<tr>
<td>every 8h</td>
<td>16</td>
<td>100</td>
</tr>
<tr>
<td>every 6h</td>
<td>25</td>
<td>100</td>
</tr>
<tr>
<td>every 4h</td>
<td>32</td>
<td>100</td>
</tr>
</tbody>
</table>

66 % of time coverage for 1 g per administration

OPTIMAL BECAUSE NO UNNECESSARY PEAKS !!!
β-lactams PK / PD and resistance

- too low doses
- too long intervals
- too high breakpoints

“250 mg” ampicillin... BID schedules...
cefaclor, some C4, ...

lead to suboptimal effects

- delay in eradication
- selection of subpopulations with reduced susceptibility
2. Time-dependent killing and prolonged persistent effects (duration related to AUC)

- Seen with glycopeptides, tetracyclines, azithromycin, streptogramins and fluconazole
- Goal of dosing regimen: optimize amount of drug
- AUC / MIC is the major parameter correlating with efficacy

* 2d ISAP Educational Workshop, Stockholm, Sweden, 2000
Evidence is mounting that resistance to
- macrolides
- glycopeptides
- tetracyclines

can be linked to
- their slow and uncomplete bactericidal activity;
- the too low doses;
- their use in situations in which eradication is impossible to achieve.
AUC / MIC - dependent antibiotics and resistance

Examples:

• **glycopeptides**:
 – eradication of MRSA colonization
 – selective decontamination of the digestive tract
 – primary treatment of antibiotic associated colitis (AAC)
 – topical application or irrigation

• **macrolides**
 – otitis media
 – “good for all respiratory tract infections” promotion

• **tetracyclines**
 – low doses for fear of toxicity
 – treatment of acne
PK/PD and effectiveness: patterns of antimicrobial activity (after WA. Craig, 2000)

3. Concentration-dependent killing and prolonged persistent effects (post-antibiotic effect)

- Seen with aminoglycosides, quinolones, daptomycin, ketolides and amphotericin B
- Goal of dosing regimen: maximize concentrations
- **AUC/MIC** and **Peak / MIC** are major parameters correlating with efficacy

* 2d ISAP Educational Workshop, Stockholm, Sweden, 2000*
Aminoglycosides: obtain a peak!

1. **adequate mode of administration**
 - i.v. administration

2. **calculate the peak you need**
 - minimal peak = MIC / 8

3. **calculate the dose you need**
 - dose = peak x Vd
Aminoglycosides:

increase the unit dose to get the appropriate peak!

\[\text{MIC} = 1 \text{ mg/L} \quad \rightarrow \quad C_{\text{max}} = 8 \text{ mg/L} \quad \rightarrow \quad 3 \text{ mg/kg} \]

\[\text{MIC} = 2 \text{ mg/L} \quad \rightarrow \quad C_{\text{max}} = 16 \text{ mg/L} \quad \rightarrow \quad 6 \text{ mg/kg} \]

\[\text{MIC} = 4 \text{ mg/L} \quad \rightarrow \quad C_{\text{max}} = 32 \text{ mg/L} \quad \rightarrow \quad 15 \text{ mg/kg} \]
Aminoglycosides 1st rule of thumb...

- Anything with an MIC < 1 (within the indications) will be treatable.
- Efficacy will become a problem for organisms with MIC’s:
 - > 2 for G, T, N (up to 6 mg/kg)
 - > 4 for A, I (up to 15 mg/kg)

PK/PD “safe” breakpoints for AG:
- G, N, T : 2 μg / ml
- A / I : 4 μg / ml
Aminoglycosides 2d rule of thumb...

give them once-a-day to reduce toxicity
- 1h peaks of 12-18 mg/L for G, T, N
- 1h peaks of 20-30 mg/L for A, I

Increase interval (⇒ 36h, ⇒ 48h)
in case of renal failure
before reducing the unit dose...

Once-daily dosing of aminoglycoside antibiotics
Fisman, DN; Beth Israel Deaconess Med Ctr; Div Infect Dis; Harvard Univ, Sch Publ Hlth, Infectious-Disease-Clinics-of-North-America. Jun 2000
PK/PD of fluoroquinolones

1. role of the 24h-AUC / MIC ratio

Forrest et al., AAC, 1993
24h AUC / MIC ratio

AUC_{24h} = \frac{\text{dose}_{24h}}{\text{clearance}}
24h AUC / MIC and FQ effectiveness: *in vitro* dynamic models

- Antibacterial effect is correlated with drug exposure (AUC);
- AUC / MIC is best predictor in inter- fluoroquinolones comparisons;
- minor influence of the inoculum size;
 - Firsov et al., J Antimicrob Chemother 1999 43:483-90

- log change in viable counts is related to AUC / MIC ratio
 - McGowan et al., Antimicrob Agents Chemother 1999 43:1560-4
Peak / MIC ratio

\[C_{\text{max}} = \frac{\text{dose}}{V_d} \times \text{bioavail.} \times \text{absorpt. rate} \]
Peak / MIC and FQ effectiveness (animal models)

- **Peak/MIC ratio** becomes predictive at ratios > 10;
 (AUC / MIC is more predictive at peak/MIC < 10)
 no influence of time > MIC

- **Dose-dependency** is clearly observed *in vivo*
 Dalhoff, J Antimicrob Chemother 1999 May;43 Suppl B:51-9

- **Penetration** in inflammatory fluids and interstitial fluids is dependent on peak

OBJECTIVE:
To prospectively quantitate the relationship between plasma levels of levofloxacin and successful clinical and/or microbiological outcomes and occurrence of adverse events in infected patients.

PATIENTS: 313 with clinical signs and symptoms of bacterial infections of the respiratory tract, skin, or urinary tract.

MAIN OUTCOME MEASURES: Clinical response and microbiological eradication of pathogenic organisms.
Peak / MIC of FQ: clinical data

RESULTS:
• 134 / 313 had both PK and MIC
• clinical AND bacterial outcomes were related to peak/MIC (logistic regression; p < 0.001)
• results were favourable if peak / MIC > 12.2

But:
- very few failures (clinical and microbiol. success rates: 95 and 96 %)
- mainly single daily doses (500 mg)
 ➔ always high peak
 ➔ peak and AUC are directly linked
 unless very different schedules are used ...
PK/PD in action ...

Remember:

- 24h-AUC is proportional to the daily dose
- Peak is proportional to the unit dose...
24h-AUC / MIC as a tool to determine acceptable sensitivities to standard doses of FQ

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage (mg/24h)</th>
<th>24h-AUC (mg/L x h)</th>
<th>PK/PD Bkpt</th>
</tr>
</thead>
<tbody>
<tr>
<td>norfloxacin</td>
<td>800</td>
<td>14 *, #</td>
<td>0.1</td>
</tr>
<tr>
<td>ciprofloxacin</td>
<td>500</td>
<td>12 *</td>
<td>0.1</td>
</tr>
<tr>
<td>ofloxacin</td>
<td>400</td>
<td>31 to 66 *, +</td>
<td>0.2 - 0.4</td>
</tr>
<tr>
<td>levofloxacin</td>
<td>500</td>
<td>47 *</td>
<td>0.4</td>
</tr>
<tr>
<td>gatifloxacin</td>
<td>400</td>
<td>35 *</td>
<td>0.3</td>
</tr>
<tr>
<td>moxifloxacin</td>
<td>400</td>
<td>48 *</td>
<td>0.4</td>
</tr>
</tbody>
</table>

* US prescrib. inf. (adult of 60 kg) of NOROXIN®, CIPRO®, FLOXIN®, LEVAQUIN®, TEQUIN® and AVELOX®; # litterature data; + first dose to equilibrium
Peak concentrations as a tool to determine acceptable sensitivities to standard doses of FQ

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage (mg/24h)</th>
<th>C_{max} (mg/L)</th>
<th>PK/PD Bkpt $[C_{\text{max}} / 12]$ (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>norfloxacin</td>
<td>800</td>
<td>2.4 *</td>
<td>0.2</td>
</tr>
<tr>
<td>ciprofloxacin</td>
<td>500</td>
<td>2.4 *</td>
<td>0.2</td>
</tr>
<tr>
<td>ofloxacin</td>
<td>400</td>
<td>3-4.5 *, +</td>
<td>0.3 - 0.4</td>
</tr>
<tr>
<td>levofloxacin</td>
<td>500</td>
<td>5-6 *, +</td>
<td>0.4 - 0.5</td>
</tr>
<tr>
<td>gatifloxacin</td>
<td>400</td>
<td>4.2 *</td>
<td>0.4</td>
</tr>
<tr>
<td>moxifloxacin</td>
<td>400</td>
<td>4.5 *</td>
<td>0.4</td>
</tr>
</tbody>
</table>

* US prescrib. inf. (adult of 60 kg) of NOROXIN®, CIPRO®, FLOXIN®, TEQUIN®, LEVAQUIN®, and AVELOX®

+ first dose to equilibrium
Combining it all ...(Peak and 24h-AUC / MIC) as predictors of efficacy standard doses of FQ ...

PK/PD Bkpts (mg/L)

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage (mg/24h)</th>
<th>AUC/MIC (24h)</th>
<th>peak / MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>norfloxacin</td>
<td>800</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>ciprofloxacin</td>
<td>500</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>ofloxacin</td>
<td>400</td>
<td>0.2-0.4</td>
<td>0.3 - 0.4</td>
</tr>
<tr>
<td>levofloxacin</td>
<td>500</td>
<td>0.4</td>
<td>0.4 - 0.5</td>
</tr>
<tr>
<td>gatifloxacin</td>
<td>400</td>
<td>0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>moxifloxacin</td>
<td>400</td>
<td>0.4</td>
<td>0.4</td>
</tr>
</tbody>
</table>

* US prescrib. inf. (adult of 60 kg) of NOROXIN®, CIPRO®, FLOXIN®, LEVAQUIN®, TEQUIN® and AVELOX®
Combining it all ...(Peak and 24h-AUC / MIC) as predictors of efficacy standard doses of FQ ...

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage (mg/24h)</th>
<th>AUC/MIC (24h)</th>
<th>peak / MIC</th>
<th>NCCLS Bkpts*</th>
</tr>
</thead>
<tbody>
<tr>
<td>norfloxacin</td>
<td>800</td>
<td>0.1</td>
<td>0.2</td>
<td>< 4</td>
</tr>
<tr>
<td>ciprofloxacin</td>
<td>500</td>
<td>0.1</td>
<td>0.2</td>
<td>< 1</td>
</tr>
<tr>
<td>ofloxacin</td>
<td>400</td>
<td>0.2-0.4</td>
<td>0.3 - 0.4</td>
<td>< 2</td>
</tr>
<tr>
<td>levofloxacin</td>
<td>500</td>
<td>0.4</td>
<td>0.4 - 0.5</td>
<td>< 2</td>
</tr>
<tr>
<td>gatifloxacin</td>
<td>400</td>
<td>0.3</td>
<td>0.4</td>
<td>< 2</td>
</tr>
<tr>
<td>moxifloxacin</td>
<td>400</td>
<td>0.4</td>
<td>0.4</td>
<td>< 2</td>
</tr>
</tbody>
</table>

* US prescrib. inf. (adult of 60 kg) of NOROXIN®, CIPRO®, FLOXIN®, LEVAQUIN®, TEQUIN® and AVELOX®
Patients may be treatable because AUC (but not C_{max}) increases with decreased drug clearance.

An example with levofloxacin 500 mg qD

<table>
<thead>
<tr>
<th>creatinine clearance (mg/l)</th>
<th>AUC (mgxh/L)</th>
<th>PK/PD Bkpt (mg/L)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>56</td>
<td>0.5</td>
</tr>
<tr>
<td>50</td>
<td>98</td>
<td>0.8</td>
</tr>
</tbody>
</table>

* $\text{AUC} / \text{MIC} = 125$

But the peak remains unchanged at $\sim 5 \text{ mg/L}$.
Is a 24h AUC / MIC ratio of 125 necessary?

Relationship Between 24 Hr AUC/MIC and Mortality for FQs in Immunocompromised Animal Models with Gram (-) bacilli infection (Craig, 2000) *

* 2d ISAP Educational Workshop, Stockholm, Sweden, 2000
Is a 24h AUC / MIC ratio of 125 necessary?

Relationship Between 24 Hr AUC/MIC and Mortality for FQs in Immunocompetent Animal Models with Str. pneumoniae infection (Craig, 2000) *

* 2d ISAP Educational Workshop, Stockholm, Sweden, 2000
PK / PD bkpt for AUC / MIC

An example with levofloxacin 500 mg qD

<table>
<thead>
<tr>
<th>Creatinine clearance (mg/l)</th>
<th>AUC (mg/L X h)</th>
<th>PK/PD Bkpt (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>56</td>
<td>0.5</td>
</tr>
<tr>
<td>50</td>
<td>98</td>
<td>0.8</td>
</tr>
</tbody>
</table>

But the peak remains unchanged at ~ 5 mg/L

\[
\text{AUC} / \text{MIC} = 125 \\
\text{AUC} / \text{MIC} = 25
\]
To increase both AUC and peak ... increase the unit dose ...

<table>
<thead>
<tr>
<th>dosage qD</th>
<th>AUC * mg*h/L</th>
<th>PK/PD Bkpt**</th>
<th>Peak * mg /L</th>
<th>PK/PD Bkpt***</th>
</tr>
</thead>
<tbody>
<tr>
<td>250</td>
<td>28</td>
<td>1</td>
<td>2.5</td>
<td>0.25</td>
</tr>
<tr>
<td>500</td>
<td>56</td>
<td>2</td>
<td>5</td>
<td>0.5</td>
</tr>
<tr>
<td>1000</td>
<td>112</td>
<td>4</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

* based on normal half-lifes; CL ~ 100 mg/dl; doses for an adult of 65 kg
** for a 24h AUC / MIC = 25
*** for a peak / MIC = 10

MIC S. pneumoniae ~ 1-2 mg/L

An example with levofloxacin (qD)
Classical breakpoints of older FQs and of levofloxacin are probably set too high and correspond to PK/PD breakpoints only if:
- clearance is lower than in normal subjects
- accepting an AUC / MIC ratio of 25 as being sufficient...

Classical FQ breakpoints almost never correspond to a peak / MIC ratio of 10!
Why would too high breakpoints favour the emergence of resistance to FQs?

- cell killing occurs too slowly
 - acquisition / improvement of mechanisms of resistance
- subpopulations with decreased susceptibility are not affected
 - selection and spreading
Resistance to fluoroquinolones: the basics

- Increased permeability
- Efflux pump
- Mutation of enzymes
- DNA gyrase
- Topoisomerase

Gram (-)

Gram (+)
The "Mutant Prevention Concentration" *

When Mycobacterium bovis BCG and Staphylococcus aureus were plated on agar containing increasing concentrations of fluoroquinolone, colony numbers exhibited a sharp drop, followed by a plateau and a second sharp drop.

The plateau region correlated with the presence of first-step resistant mutants. Mutants were not recovered at concentrations above those required for the second sharp drop, thereby defining a mutant prevention concentration (MPC).

The MPC / MIC ratio is usually 10, but a C8-methoxy group lowers it to ~ 3 for N-1-cyclopropyl-fluoroquinolones.

Dong et al; AAC 43:1756-1758
PK/PD and point mutation in DNA gyrase...

Bactericidal activity of FQs against *Mycobacterium bovis*

MIC (99)

MPC (10)

PD160793

PD161148

R = OCH₃ R = H

<table>
<thead>
<tr>
<th></th>
<th>MIC 99</th>
<th>MPC 90</th>
<th>MPC/MIC</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD160793</td>
<td>0.25</td>
<td>0.9</td>
<td>3.6</td>
</tr>
<tr>
<td>PD161148</td>
<td>0.8</td>
<td>9</td>
<td>12</td>
</tr>
</tbody>
</table>

Dong et al; AAC 43:1756-1758
C_{max} and MPC of FQ’s

<table>
<thead>
<tr>
<th>Drug</th>
<th>Dosage (mg/24h)</th>
<th>C_{max} (mg/L)</th>
<th>MPCa (mg/L)</th>
</tr>
</thead>
<tbody>
<tr>
<td>norfloxacin</td>
<td>800</td>
<td>2.4 *</td>
<td>~ 2.4</td>
</tr>
<tr>
<td>ciprofloxacin</td>
<td>500</td>
<td>2.4 *</td>
<td>~ 2.4</td>
</tr>
<tr>
<td>ofloxacin</td>
<td>400</td>
<td>3-4.5 * , +</td>
<td>~ 4.8</td>
</tr>
<tr>
<td>levofloxacin</td>
<td>500</td>
<td>5-6 * , +</td>
<td>~ 9.6</td>
</tr>
<tr>
<td>gatifloxacin</td>
<td>400</td>
<td>4</td>
<td>~ 4.0</td>
</tr>
<tr>
<td>moxifloxacin</td>
<td>400</td>
<td>4.5 *</td>
<td>~ 1.4</td>
</tr>
</tbody>
</table>

a in *Str. Pneumoniae* (Blondeau et al., A.A.C. 45:433-438, 2001)

* US prescrib. inf. (adult of 60 kg) of NOROXIN®, CIPRO®, FLOXIN®, LEVAQUIN®, TEQUIN®, and AVELOX®

+ first dose to equilibrium
If

- the MPC concept is correct, and
- first mutants can appear in vivo during therapy,

then,

- older FQ’s have been used under conditions favouring the development of resistance
- we should use present and future FQ’s only with doses which allow $C_{\text{max}} > \text{MPC}$...
PK/PD and antibiotic efflux pumps...

Efflux pumps are

- ubiquitous (procaryotes, eucaryotes, …) probably conferring significant advantages
- largely unspecific for their substrates may transport several classes of antibiotics
- responsible for both “intrinsic” and acquired resistance
Efflux pumps...

- are unspecific but also very “picky” in substrate recognition
 - large variations among related drugs
- show rapidly increased effectiveness by point mutations
 - easy adaptation to new environment
- cooperate with other mechanisms of resistance
 - high level resistance phenotypes
- are under control of regulatory genes
 - multiantibiotic resistance phenotype
Efflux pumps and first mutation may cooperate ...
Efflux pumps may bring intrabacterial concentrations of FQ < MPC ...

Van Bambeke et al., 2000
PK/PD and resistance?

- **Efficacy**
 - certainly yes

- **Reduced toxicity**
 - yes (if related to a PK parameter)

- **Prevention of resistance**
 - probably

 But we have still a long way to go...
A long way indeed ...

Triptych with the Miracles of Christ
Flemish painting (1470-1495)
But closer than you thought ...

The National Gallery of Victoria, Melbourne, Australia (http://www.ngv.vic.gov.au)

F. Van Bambeke
Y. Ouadrhiri
S. Carryn
H. Chanteux
H. Servais

W.A. Craig
G.L. Drusano
J.J. Schentag
A. McGowan
X. Zao
V. Firsov
S. Zinner
A. Dalhoff
...

www.md.ucl.ac.be/facm

http://www.isap.org