Pharmacodynamics: Integrating Concerns about Resistance and Efficacy in the Practical Care of Patients

William A. Craig, MD University of Wisconsin and Wm S. Middleton Memorial VA Hospital Madison, WI USA

Pharmacology of Antimicrobials

Pharmacokinetics (PK) Pharmacodynamics (PD)

Measures of Antimicrobial Activity

Potency

- MIC
- MBC

Time Course of Activity

- Rate of killing and impact of increasing concentrations (concentration-dependent versus time-dependent killing)

- Persistent effects (postantibiotic effect, postantibiotic sub-MIC effect, postantibiotic leukocyte effect, postantimicrobial effect)

Bactericidal Activity of Tobramycin and Ticarcillin against *Pseudomonas aeruginosa*

Vogelman et al. J Infect Dis 157, 1988

1st Pattern of Antimicrobial Activity

- Concentration-dependent killing and prolonged persistent effects
- Seen with quinolones, aminoglycosides, ketolides, and daptomycin
- Goal of dosing regimen: maximize concentrations – amount of drug and peak level are important

2nd Pattern of Antimicrobial Activity

- Time-dependent killing and minimal or no persistent effects (except with staphylococci)
- Seen with all beta-lactams
- Goal of dosing regimen: optimize duration of exposure; maximum killing when levels constantly above 4-5 times MIC

3rd Pattern of Antimicrobial Activity

- Time-dependent killing and moderate to prolonged persistent effects
- Seen with macrolides, azithromycin, clindamycin, tetracyclines, glycylcyclines, streptogramins, glycopeptides, oxazolidinones, deformylase inhibitors

 Goal of dosing regimen: optimize amount of drug; maximum killing when T>MIC 100% **Major Goal of Pharmacodynamics**

Establish the PK/PD TARGET required for effective antimicrobial therapy

 - identify which PK/PD indice (T>MIC, AUC/MIC, peak/MIC) best predicts in vivo antimicrobial activity

 determine the magnitude of the PK/PD parameter required for in vivo efficacy and to prevent resistance

Neutropenic Mouse Thigh-Infection Model

1. Neutropenia induced by 2 injections of cyclophosphamide on days -4 and -1

4. Thighs removed, homogenized, serially diluted and plated for CFU determinations

3. Treatment (usually given SQ) started 2 hr after infection and continued for 1-5 days

2. Bacteria injected into thighs on day 0 (10⁶⁻⁷⁾

Correlation of PK/PD Parameters with Efficacy Levofloxacin against *Streptococcus pneumoniae* in Thighs of Neutropenic Mice

Relationship Between PK/PD Parameters and Efficacy for Cefpirome against *Klebsiella pneumoniae* in Lungs of Neutropenic Mice

Craig Antimicrobial Pharmacodynamics in Theory and Practive 2002

Factors That Affect the Magnitude of PK/PD Parameters

- dosing regimen
- drug class
- protein binding
- infecting pathogen
- presence or absence of neutrophils
- site of infection

24-Hr AUC/MIC with Total and Free Drug for the Static Dose of Different Fluoroquinolones with *S. pneumoniae* ATCC 10813

Andes & Craig 40th and 41st ICAAC, 2000 and 2001

Time Above MIC Required for a Static Effect with 4 Cephalosporins

	Time Above MIC (% of Dosing Interval)			
Drug	GNB S	S. pneumoniae	S.aureus	
Ceftazidime	36 (27-42)	39 (35-42)	22 (19-24)	
Cefpirome	35 (29-40)	37 (33-39)	22 (20-25)	
Cefotaxime	38 (36-40)	38 (36-40)	24 (20-28)	
Ceftriaxone	38 (34-42)	39 (37-41)	24 (21-27)	

Craig Diagn Microbiol Infect Dis 22:89, 1995

T>MIC for Free Drug for Static Doses with Cephalosporins, Penicillins and Carbapenems against Multiple Strains of S. pneumoniae with Various Penicillin MICs

T>MIC for ß-Lactams Versus Mortality in Animal Models: Literature Review

Craig Antimicrobial Pharmacodynamics in Theory and Practive 2002

Relationship Between T>MIC and Bacterial Eradication with Beta-Lactams in Otitis Media (Circles) and Maxillary Sinusitis (Squares)

- Bacteriologic cure for betalactams with *S. pneumoniae* and *H. influenzae* from double-tap studies in acute otitis media and acute maxillary sinusitis
- Time above MIC calculated from serum levels and MICs
- Craig & Andes, Pediatr Infect Dis J 15:255, 1996; Dagan et al JAC 47:129, 2001; Dagan et al Pediatr Infect Dis J 20:829, 2001

Comparison of the Relationships Between Efficacy and 24-Hr AUC/MIC for Fluoroquinolones in Animal Models and Infected Patients

Animals - Literature Review

Seriously ill patients + Ciprofloxacin

Andes, Craig Int J Antimicrob Agents, 2002Forrest et al. AAC 37:1073, 1993

Comparison of the Relationships Between 24-Hr AUC/MIC and Efficacy against Pneumococci for Fluoroquinolones in Animals and Patients

Animals - Literature Review

Patients with CAP and AECB

- 58 patients enrolled in a comparative trial of levofloxacin vs gatifloxacin
- Free-drug 24-hr AUC/MIC
 <33.7, the probability of a microbiologic cure was
 64%
- Free-drug 24-hr AUC/MIC
 >33.7, the probability of a microbiologic cure was 100%

Andes, Craig Int J Antimicrob Agents, 2002 Ambrose et al AAC 45:2793, 2001

Uses of Pharmacodynamic Studies

 Drug development

 new formulations active against organisms with high MICS (e.g. high dose amoxicillin/clavunate)
 dosage regimens for phase II and III clinical trials
 drug selection for clinical studies

 Optimize dosing regimens

 longer infusions and continuous infusion of beta-lactams
 once-daily dosing of aminoglycosides

Uses of Pharmacodynamic Studies

- Guidelines for antimicrobial usage
- Reduction of emergence of resistance
- Modifications of susceptibility and resistance breakpoints

 parenteral cephalosporins for S.
 pneumoniae
 fluoroquinolones for S. aureus
- Identify problem drug-organism combinations with specific MICs

Fluoroquinolone AUC/MIC₉₀ Ratios for *S. pneumoniae*

Jacobs MR. Clin Microbiol Infect . 2001;7:589-596.

PK/PD Parameters versus Emergence of Resistance for Fluoroquinolones

Resistance Developed

<u>24-Hr AUC/MIC</u>	<u>P. aeruginosa</u>	Other GNB
<100 - Monotherapy	80%	100%
>100 – Monotherapy	33%	10%
Combinations	<u>11%</u>	_0%
	25%	12%

Thomas et al. AAC 42:521, 1998

Magnitude of PK/PD Parameters for Common Drugs Used Against Pseudomonas aeruginosa

Drug	Dose	MICs	Peak/MIC	AUC/MIC
Ciprofloxacin	400mg q8	0.25-1	20/4	144/ <mark>36</mark>
Levofloxacin	750mg q24	0.5-4	12/ <mark>3</mark>	125/ <mark>31</mark>
Tobramycin	7 mg/kg q24	1-4	24/ 6	84/21

Monte Carlo Simulation

Simulate

PK Variation In Normal — Volunteers or Patients

PK Variation in
 10,000 Patients

Determine Percentage of Patients that would meet the PK/PD Target required for efficacy

Drusano et al

Monte Carlo Simulation: Cefotaxime Percent of 10,000 Patients Attaining Indicated PK/PD Exposure Target

T>MIC with 1g every 8 hr

MIC	<u>30%</u>	<u>40%</u>	<u>50%</u>	<u>60%</u>	<u>70%</u>
0.5	100	99	97	89	73
1	99	98	89	71	49
2	98	91	67	41	22
4	92	62	29	11	4
8	58	15	3	0	0
16	12	0	0	0	0

Ambrose & Dudley, ICAAC 2002

Clinical Outcome in 42 Patients with ESBL-Producing Klebsiella/E. coli Bacteremia and Treated with Cephalosporin Monotherapy

	MIC	MIC	MIC	MIC
Outcome	<u>≤</u> 1 ųg/L	2 ųg/L	4 ųg/L	8 ųg/L
Success	13 (81%)	4 (67%)	3 (27%)	1 (11%)
Failure	3 (19%)	2 (33%)	8 (73%)	8 (89%)

Paterson et al J Clin Micro 39:2206, 2001; Kim et al AAC 46:1481, 2002; Wong-Beringer et al Clin Infect Dis 34:135, 2002; Kang et al AAC In press 2004; Bhavani et al 44rd ICAAC, Abstract K-1588, 2004

Monte Carlo Simulation: Meropenem Percent of 10,000 Patients Attaining Indicated PK/PD Exposure Target

	T>MIC of 40% with doses of:		
MIC	<u>0.5g q8 (1h inf)</u>	<u>0.5g q8 (3h inf)</u>	
0.5	95	100	
1	90	100	
2	65	99	
4	32	80	
8	4	14	
16	0	1	

Lomaestro & Drusano AAC 2004

Pharmacology of Antimicrobials

Pharmacokinetics (PK) Pharmacodynamics (PD)