Temocillin dosing in haemodialysis patients based on population pharmacokinetics of total and unbound concentrations and Monte Carlo simulations

Ana C. MIRANDA BASTOS,1,2 Stefaan J. VANDECASTEELE,3 Anne SPINEWINE,2 Paul M. TULKENS,1 François VAN BAMBEKE1.*

1Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels; 2Clinical Pharmacy Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels; 3Department of Nephrology and Infectious Diseases, AZ Sint-Jan Brugge-Oostende AV, Belgium.

Running title: Modelling of unbound temocillin PK in haemodialysis

Paper metrics

Abstract word count: 242 (max 250)
Word count: 3578 (max 3500)
References: 43
Exhibits: 4 Figures and 3 Tables

* Corresponding author:
Pharmacologie cellulaire et moléculaire, Université catholique de Louvain
Avenue E. Mounier 73 B1.73.05, B-1200 Brussels, Belgium.
Phone: +32-2-7647378; E-mail address: francoise.vanbambeke@uclouvain.be
Abstract

Objectives: To develop a population model describing temocillin pharmacokinetics in patients undergoing haemodialysis and investigate how pharmacokinetic/pharmacodynamic (PK/PD) targets can be met with different dosage regimens.

Patients and methods: Sixteen patients received the currently licenced dosing of 1, 2, or 3 g of temocillin (total 61 doses) corresponding to an interdialytic period of 20, 44, or 68 h, respectively, and a dialysis period of 4 h. A nonlinear mixed effects model was developed jointly for total and unbound temocillin serum concentrations. The performance of clinically feasible dosing regimens was evaluated using a 5,000-subject Monte Carlo simulation for determining the highest MIC for which the PK/PD target of $40\% fT_{>\text{MIC}}$ would be reached in 90% of patients (PTA).

Results: Temocillin unbound and total serum concentrations (429 samples) were used to fit an open two-compartment model with nonlinear albumin binding and first-order elimination. In addition to total body clearance, dialysis clearance was modelled using the Michaelis function. The currently licenced dosing achieved a 90% PTA for an MIC up to 8 mg/L. A new temocillin dosage regimen was designed that would achieve a 90% PTA for an MIC of 16 mg/L (MIC$_{90}$ of target organisms) adjusted to patient weight and interdialytic period.

Conclusions: Current licensed dosage regimen is suboptimal for MICs > 8 mg/L (frequently found in clinical isolates). Model-based simulations allowed to suggest a new dosage regimen with improved probability of microbiological success, applicability in routine clinical practice, and more appropriate for empirical therapy.
Introduction

 Patients with end-stage renal disease (ESRD) suffer a very high morbidity and mortality, with infection being the second leading cause of mortality.\(^1\) Haemodialysis patients in particular have huge rates of bacteraemia.\(^1,2\) Although Gram-positive organism infections are predominant in haemodialysis populations, recent studies have highlighted an alarming increase of Gram-negative bacteraemia.\(^3-5\) In addition, multi-resistant organisms are on the rise in this setting, imposing a target-oriented use of antimicrobial drugs.\(^3,5\) Temocillin, a Gram-negative spectrum β-lactam antibiotic with a remarkable stability against most β-lactamases, including AmpC, ESBL and most carbapenemases,\(^6\) could therefore fill a unmet medical need. Its renaissance in haemodialysis units was, however, challenged as most of its PK data dates back to the 1980s.\(^7,8\) This data no longer reflects the marked advances in dialysis equipment and changes in dosing schemes.

We have conducted and have reported a pharmacokinetic study of temocillin in haemodialysis patients receiving this drug on dialysis days only using non-compartmental analysis.\(^9\) This study was initiated because dialysis can alter drug pharmacokinetics (PK), influenced by several specific factors such as drug protein binding, dialysis system characteristics and geometry, and dialysis conditions.\(^10\) Based on this study, concerns about temocillin underdosing if following the originally approved drug dosage recommendations have been raised,\(^9\) and acted upon by updating the Summary of Product Characteristics (SmPC; effective in Belgium and France since June 2017)\(^11\). An additional difficulty, however, stems from the fact that the pharmacokinetics of temocillin are nonlinear, due to saturable protein binding and extra-renal elimination.\(^12,13\) Hypoalbuminemia is frequent in ESRD patients\(^10\) and further adds to this complexity, as temocillin is highly protein bound (70-85% in healthy subjects).\(^6\) As other beta-lactams, temocillin exhibits time-dependent killing.\(^6\) Therefore the most important pharmacokinetic/pharmacodynamic (PK/PD) index predicting antimicrobial efficacy is the percentage of the dosing interval during which its unbound concentration is maintained above the MIC of the offending organism (\(f_{\text{T>MIC}}\)).\(^14\) As treatment with temocillin is often empirical, the actual MIC of temocillin for the offending organism(s) is unknown. However, the
temocillin MIC\textsubscript{90} is 16 mg/L for Enterobacteriaceae.15,16 Monte Carlo (MC) simulations are a tool for estimating the probability of attaining a specific PK/PD target, accounting for PK data.17 They enable the optimisation of dosage regimens and maximizing probability of target attainment (PTA), used as a surrogate for successful microbiological outcome.17

The purpose of the present study was to develop a mechanism-based population PK model of the concentration-time profile of temocillin unbound and total serum concentrations in haemodialysis patients, starting from the raw data of our previous study (see 9). The present study also investigates the relationship between dosage regimens and achievement of PK/PD targets.
Methods

Study design and population

This pharmacokinetic study was conducted and obtained ethical approval protocol (unique Belgian no. B049201215528) at the AZ Sint-Jan Brugge Hospital in Belgium, and was registered at ClinicalTrials.gov (NCT02285075). The study design as well as a non-compartmental analysis of temocillin serum concentrations-time data has previously been published⁹ (see Figure S1, in Supplementary data at JAC Online). This non-randomised, open-label, multiple-dose study reflects the current clinical practice at the study site with 4-hours standard haemodialysis sessions. Patients were included if undergoing intermittent haemodialysis for ESRD and prescribed temocillin for documented or suspected infection caused by an organism susceptible to temocillin. Temocillin was administered in 1g, 2g or 3g doses on dialysis days only, for 24h, 48h, or 72h inter-dialytic intervals, respectively. Treatment regimen and duration were determined by the attending physician. Exclusion criteria were age (<18 years), limited (<24h) estimated life-expectancy due to major comorbidity, pregnancy, IgE-mediated allergy to penicillins, or withholding written informed consent. FX80 and FX10 dialyzers (Fresenius Medical Care AG & Co., Bad Homburg, Germany) were used.

Blood was sampled from an arterial or venous catheter as follows: pre-dose sample followed by samples at 0.5, 3, 6, 12, 24, 36, 48 and 68h, truncated by the next dialysis session. During the 4h dialysis session 3 additional hourly samples were collected (see Figure S2 in Supplementary data at JAC Online). Serum samples were obtained by centrifugation after blood clotting and frozen at -80°C until analysis. Validated HPLC methods described in details elsewhere¹⁸,¹⁹ with a lower limit of quantification of 5 mg/L and 0.1 mg/L for total and unbound concentrations (determined in ultra-filtrates), respectively, were used; the non-compartmental analysis of the data was previously reported.⁹

Pharmacokinetic analysis

Pharmacokinetic data were analysed using nonlinear mixed effects models with NONMEM version 7.3 (ICON Development Solutions, Ellicott, MD, USA). The first-order
conditional estimation method with interaction and subroutine ADVAN13 TRANS1 was used during model development. Automation and post-processing of results was with Perl-Speaks-NONMEM (version 4.4.8; http://psn.sourceforge.net/), and RStudio 0.99.467 with R 3.1.1 (http://www.r-project.org/). Pirana 2.9.2 (http://www.pirana-software.com/) organized the model development.

The PK model was built to fit two types of data simultaneously: temocillin unbound and total serum concentrations. This required two principal model components: (1) a disposition model for unbound temocillin and (2) a model for the relationship between unbound drug and drug bound to serum proteins.

A nonlinear binding model was used to relate total serum concentrations \(C_{\text{tot}} \) and unbound concentrations \(C_u \):

\[
C_{\text{tot}} = C_u + \left[(C_u \times B_{\text{max}}) / (C_u + K_d) \right] \quad (\text{Eq. 1})
\]

where \(B_{\text{max}} \) is the maximal binding capacity and \(K_d \) the equilibrium dissociation constant.

In addition to the intrinsic total body clearance, temocillin dialysis clearance was implemented and set to zero only during interdialytic periods. Temocillin dialysis clearance \(CL_{\text{dial}} \) was estimated using Michaels equation (Eq. 2)

\[
CL_{\text{dial}} = \frac{BFR \exp \left(\frac{KoA}{BFR} \right)}{\exp \left(\frac{1}{\frac{BFR}{DFR} - 1} \right)} \quad (\text{Eq. 2})
\]

where \(KoA \) is the mass transfer area coefficient of the dialysis filter for temocillin (L/h); BFR is the blood flow rate (specific to each session, with typical values of 300-400 mL/min); and DFR the dialysate flow rate (specific to each session, with constant value in our study of 500 mL/min). It allows to describe the haemodialysis operating conditions, by relating dialysis parameters (BFR, DFR, KoA) to the clearance of a solute. After evaluating several statistical models for variability, residual variability was best described by a proportional model and inter-individual variability (IIV) and inter-occasion variability (IOV) by a log-normal distribution. An “occasion” was defined as a set of concentration-time data corresponding to a dosing interval.
The covariates considered were age, dry body weight, serum albumin, urea concentration pre-dialysis, urea reduction rate, creatinine concentration pre-dialysis, and creatinine reduction rate. Body weight, standardized to 70 kg, was included as an allometric function on all clearance (power coefficients =3/4) and volume (power coefficient = 1) parameters for their strong theoretical and empirical evidence.24,25

The best-performing base-model was used for covariate model building and empirical Bayes estimates plotted against covariate values to explore potential relationships. An observable trend between covariates and PK parameters led to consideration for inclusion in the population model. The influence of subject-specific covariates was assessed by the forward-inclusion and backward-deletion method, using significant levels of p<0.01 and p<0.005 respectively.26 Improvements in the fit obtained with each model were assessed in several ways. The NONMEM-generated objective function value (OFV) was used to perform the likelihood ratio test. When comparing nested models, a decrease in OFV of ≥ 3.84 was required to reach statistical significance (p<0.05, 1 df) and choosing the more complex model. Additional consideration was reductions in the IIV, IOV, residual variability and precision of the parameter estimates as well as diagnostic plots and shrinkage.

The final population model was evaluated using the sampling importance resampling (SIR) method27 and prediction-corrected visual predictive checks (pcVPC) based on 1000 simulations.28 The SIR was deemed more appropriate than the bootstrap in this case because it is less sensitive to sample size. In addition, it allows fast run times as it does not require estimation steps. The model was also assessed by normalized prediction distribution errors (NPDE) metrics.29 For a model with good predictability, the NPDE should follow an N(0,1) distribution.30

Pharmacodynamic simulations

With model parameters determined, Monte Carlo simulations were used to explore the probability of achieving a pharmacodynamic target for various MICs. Simulations generated unbound concentration-time profiles for 5,000 subjects, with uniform weight distribution from 50
to 100 kg. From this, the fT_{MIC} was calculated for each subject over the treatment period. The PTA was defined as the probability of achieving the target of $40\%fT_{\text{MIC}}$, which is a commonly used target for bacteriologic cure with beta-lactams over a plausible range of potential MIC concentrations of temocillin for Gram-negative organisms (1 to 128 mg/L). The main target organisms for temocillin are ESBL-producing Enterobacteriaceae, presenting a MIC$_{90}$ of 16 mg/L. The PK/PD susceptibility breakpoint was defined as the highest MIC for which the PK/PD target of $40\%fT_{\text{MIC}>16\text{mg/L}}$ is achieved in at least 90% of patients, which is the most commonly used acceptable level of PTA.

Initially, the dosage regimens used in this study (1g q24h, 2g q48h, 3g q72h), which correspond to the recently updated licensed dosage regimens, were evaluated against the above criteria. As these regimens fell short of achieving the treatment target for a MIC and PTA cut-off of 16 mg/L and 90%, a new dosage regimen was developed for 24h, 48h and 72h inter-dialytic periods. Simplicity, and ease of use were key criteria for the proposed regimen, while not exceeding single dose administrations of 3 g. In the absence of maximum tolerated doses, current clinical practice has shown that single doses of 3 g lead to well tolerated drug concentrations in the studied population. Restricting maximum doses to this value further ensures drug concentrations remain in the range observed during model development, hence maintaining the model’s validity. The new regimen was obtained by iterative dose optimization for all weights from 50 to 100 kg, evaluated in steps of 2.5 kg.

The cumulative fraction of response (CFR) was calculated according to Mouton et al. to estimate the expected overall response of Enterobacteriaceae to temocillin for different dosage regimens. MIC distributions reported for clinical specimens, including strains with unusual resistance as reported by Woodford et al., were used (Table S1, available as Supplementary data at JAC Online). MIC distributions of isolates producing OXA-, VIM-, IMP-, or NDM-carbapenemases were, however, excluded from the dataset for their known high-level resistance to temocillin, leading to a total of 1920 strains of *Escherichia coli*, *Klebsiella* spp and *Enterobacter* spp. considered.
Results

Study population

The study included 16 patients of which 14 males (88%) with median age of 68.5 years (range 24-91 years), and median dry body weight of 73.1 kg (range 41.5-104 kg). All patients required intermittent haemodialysis and received temocillin as part of regular therapy for suspected or documented Gram-negative infection. Their key characteristics have been published elsewhere. Median albumin, creatinine pre-dialysis and blood urea nitrogen were 3.3 g/dL (range 2.1-4.4), 6.5 mg/dL (1.26-10.29), and 107 mg/dL (10-169), respectively. Seven patients (44%) were diagnosed with sepsis. Gram-negative bacteria from the Enterobacteriaceae family were identified as the causative organism in 11 (69%) patients: Escherichia coli (36.6%; n=4), Klebsiella oxytoca (27.3%; n=3), Klebsiella cloacae (27.3%; n=3), Klebsiella pneumoniae (9.1%; n=1).

Serum concentration – time profiles

Four hundred and twenty nine serum temocillin concentration measurements were available, from 48 dosing cycles, one cycle starting with the administration of temocillin and ending after dialysis. They include 4 cycles for 1g q24h, 31 for 2g q48h and 13 for 3g q72h, with a median of 3 (range:1-6) dosing cycles per patient. Haemodialysis duration was constant (4 hours), while the inter-dialytic interval was 24, 48 or 72h depending on the patient’s clinical condition. Follow-up was for a median of 5.5 days (range: 2-9). Non-compartmental analysis of serum concentration-time data for temocillin were published previously.

Pharmacokinetic analysis

Serum unbound concentration-time profiles were best described by a two-compartment model with zero-order input, and linear distribution from the central and peripheral compartment, after intravenous administration. The final model also included a first-order total body clearance that was estimated at 1.43 L/h. Assuming a typical DFR of 500 mL/min and a BFR of 300 mL/min,
the dialysis clearance (CL_{dial}) calculated from the parameter KoA (estimated at 7.83 L/h) was 7.67 L/h. The total temocillin clearance is the sum of CL and CL_{dial}. The OFV did not decrease significantly (ΔOFV = -2.6) compared to the model with constant dialysis clearance, but the Michaels equation was selected due to its mechanistic and physiologic rationale. The final base structural model describing unbound drug and bindings in serum is shown in Figure 1. The addition of IOV between dose administrations produced a further improvement in the fit (ΔOFV = -38). Dry body weight, allometrically scaled on clearance and volume parameters, resulted in an improved model (ΔOFV = - 9.2). The addition of any other covariates in the model could not be statistically supported. The median elimination half-lives ($t_{1/2}$) of temocillin for all subjects during the inter-dialytic period, estimated using empirical Bayes estimates of the final model parameters, was 22.8h (range 11-48.7h). The final population model parameters are presented in Table 1. The values of B_{max} and K_d describing the protein binding are within the nonlinear range of Eq.1, and as a consequence the median bound fraction experienced across the population is between 32% - 67%. This is expectedly lower than for healthy subjects. Goodness of fit plots and correlation of random effects for the final model were evaluated and did not show any model misspecification (see Figures S3 and S4, available as Supplementary data at JAC Online). The pcVPC plot (Figure 2) showed a good predictive power until ca. 130h, as few patients were followed up for longer that amount of time. The estimated NPDE values followed a N(0,1) distribution (Figure S5, available as Supplementary data at JAC Online).

Pharmacodynamic analysis

Figure 3 shows the PTA for $40\%fT_{\geq\text{MIC}}$ versus MIC, for various simulated temocillin dosage regimens as well as their proposed PK/PD-based temocillin breakpoints. The recently updated dosage regimen (1g q24h; 2g q48h; 3g q72h), which also corresponds to the dosage regimen currently used in the clinical centre treating the patients included in this study, reveals a probability of successful treatment (PTA $\geq 90\%$) for MICs ≤ 8 mg/L. Of note, the doses used to calculate this PTA were already twice the original licensed doses (0.5 g q24h; 1g q48h) but led to an increase of only one log$_2$ (one dilution) in the attainable MIC. For bacteria with an MIC of
16 mg/L, the administered doses of 1g q24h, 2g q48h and 3g q72h would achieve a PTA of only 60%, 72%, and 71%, respectively. Because of the poor performance of these modalities of treatment, a new regimen is proposed based on the model built and using Monte Carlo simulations. Table 2 shows the dose needed to achieve a PK/PD target of 40% $f_{T>MIC}$ for an MIC of 16 mg/L in at least 90% of patients for a 24h, 48h and 72h inter-dialytic period. Simulations suggest that for the two patient's weight extremes (50 kg and 100 kg), this new proposed dosage regimen when used in an intermittent haemodialysis schedule (Figure 4), should be safe for most patients, as they do not exceed the maximal unbound concentrations simulated for currently used doses. During the haemodialysis session, concentrations can drop to ca. 7 mg/L, calling for the need of a replacement dose after each dialysis session.

The CFRs against *E. coli*, *Klebsiella* spp, and *Enterobacter* spp. are summarised in Table 3. They were all < 46% at the original licensed dosing, increased to ca. 60% with the updated licensed dosing, and to > 80% with the new proposed dosage regimen.
Discussion

This study distinguishes itself for being the first to use a model-based approach to determine the optimal dosing of temocillin in patients undergoing intermittent haemodialysis with contemporary high-flux haemodialysers. In this work the pharmacokinetics of temocillin were characterized using nonlinear mixed-effects modelling to estimate population pharmacokinetic parameters, to evaluate the performance of different dosage regimens, and to propose new dosage guidelines.

The best-performing disposition model consisted of two compartments, and was in line with other studies. A number of covariates were available in the dataset, however only dry body weight was found valid for inclusion in the final model. The relatively small patient cohort and large heterogeneity within this population probably explains that many of the covariates did not produce statistically significant improvements in the model objective function. Without this, empirical evidence was considered insufficient to include the respective covariate. Interestingly enough, there was no significant correlation between B_{max} and albumin concentrations, implying that there may be other molecules involved in the binding process.

It has been suggested for temocillin and other beta-lactams (e.g. piperacillin) that an extra-renal elimination pathway (like biliary secretion) assumes a more important role on drug clearance in case of renal dysfunction. Thus, during model development a mixed-order (capacity-limited) elimination process was also evaluated. Although leading to a decrease in the objective function value, it was insufficient to reach statistical significance, probably due to the limited sample size. It was, therefore, not included in the final model.

The data in the present study was previously used in a non-compartmental analysis. Other than this, previous research on temocillin in a haemodialysis setting is limited to two small studies conducted in the 1980s, using haemodialysers which no longer reflect the performance of the contemporary high-flux dialysers. Therefore comparison with this data is of limited value.

Temocillin population pharmacokinetics have only been reported twice and both times in intensive care patients. De Jongh et al. assumed a constant unbound to total ratio of 25%
and modelled only total concentration.\(^4\) This linear relationship was not confirmed by the data in the present study, where the nonlinear relationship proposed finds its biological explanation in saturable protein binding. Laterre et al. modelled the unbound concentration on a cohort of non-renally impaired intensive care patients. Thus only some parameters can be compared to this study.\(^3\) The volume of distribution of the central compartment found in the present study is nevertheless in line with the one estimated in that study.

The strength of the present study is the joint model of both unbound and total concentrations collected in a routine clinical setting. Such an integrated model has not been reported previously, to the best of our knowledge. The unbound and total samples are processed differently and hence have different assay error distributions. By integrating both into the same model, one can reduce the variability in the estimated model parameters.

This model also offers improved flexibility for inferring and deriving data useful for clinical application. By working with both unbound and total concentrations, the model can be provided with only the readily obtainable total concentration data and provide estimates of the more clinically relevant (pharmacologically active) unbound concentration expected in patients.

Moreover, this model can be used to tailor dosage regimens for a specific target \(fT_{>\text{MIC}}\), given a known bacteria with a known MIC.

Based on the developed model, the Monte Carlo simulations determined the PK/PD breakpoints for different temocillin regimens. Temocillin is likely to be used against bacteria with MICs up to 16 mg/L, which implies that the updated licensed regimen of 1g q24h, 2g q48h and 3g q72h are insufficient. This updated regimen is an improvement on the former one, which was only effective, on a PK/PD standpoint, against highly susceptible bacteria (MIC < 4 mg/L).

However, the updated licensed regimen still delivers an unacceptably low overall CFR (ca. 60%). Furthermore, while it improves the PTA, it is still insufficient to meet the more clinically effective criteria of attaining a PTA for \(40\% fT_{>\text{MIC}=16\text{mg/L}}\) in 90% in the patient’s population. The currently licensed dosage regimens produced a PK/PD breakpoint of 8 mg/L, which corresponds to the temocillin clinical breakpoint for systemic infections from the BSAC.\(^4\) The corresponding CRFs were < 70%, and therefore also unacceptably low. In contrast, the regimen...
proposed in the present study produced better results, offering the possibility to cover organisms with MICs ≤ 16 mg/L (calculated value: <18 mg/L), and reliably produce a CFR of ca. 80%.

This study has limitations that deserve consideration. First, the relatively small sample size, due to practical considerations, and the performance of the study in a single clinical centre, may limit the applicability of the conclusions. This is, however, mitigated by the wealth of available data (in terms of assays collected) used to describe the temocillin concentration-time profiles. Second, we did not evaluate the performance of the dosage regimens for more aggressive PK/PD targets (e.g. 80-100%\(fT_{>\text{MIC}} \)) or even 4-5\(fT_{>\text{MIC}} \) for 100%\(fT_{>\text{MIC}} \)). For the target of this study (40%\(fT_{>\text{MIC}} \)), which is also that considered by EUCAST to establish penicillins susceptibility breakpoints, some doses were spread across two administrations to avoid potential safety issues. More aggressive targets would probably imply using frequent administration regimens impractical in a clinical setting. Further, differences in MIC distributions in various locations were not taken into account, which are needed to accurately assess the probability of treatment success. Also, the study used serum concentrations as a proxy for blood concentrations in the estimation of dialysis clearance for practical reasons and due to lack of information on temocillin blood cell partitioning. Prospective evaluation of the proposed dosage regimen is therefore necessary. Modelling, which is a cost effective and quantified precursor step in the development of improved dosing recommendations, informs the design of appropriate future clinical studies.

In conclusion, a detailed population pharmacokinetic model of temocillin with saturable protein binding is reported. Dry body weight was found to influence temocillin clearance and volume of distribution. Although recently updated, the current licensed dosage regimen was found to be adequate only for MICs ≤ 8 mg/L and, therefore, suboptimal for higher MICs that are reported in around half of the clinical isolates. Model-based simulations suggest a new dosage regimen with improved probability of treatment success, applicability in routine clinical practice, and more appropriate to use for empirical therapy.
Acknowledgments

The authors are grateful to patients and the on-site nursing/medical team for their participation. We also thank Professor Nick Holford (University of Auckland, Auckland, New Zealand) for valuable advice during model development.

Funding

This work was supported in part by the Région Wallonne (project TEMOEXPAND 1217668).

Transparency declaration

S.J.V. works at the AZ Sint-Jan Brugge-Oostende a.v., A.C.M.B. and A.S. are employees of the Université catholique de Louvain; F.V.B. is Research Director of the Fonds de la Recherche Scientifique (F.R.S.-FNRS) and P.M.T. was unpaid. P.M.T. is an unpaid advisor to Eumedica, the registration holder of temocillin. The authors have no conflict of interest to declare.
References

34. Woodford N, Pike R, Meunier D et al. In vitro activity of temocillin against multidrug-resistant clinical isolates of *Escherichia coli*, *Klebsiella* spp. and *Enterobacter* spp., and...
397 evaluation of high-level temocillin resistance as a diagnostic marker for OXA-48
399
402
403 36. Laterre PF, Wittebole X, Van de Velde S et al. Temocillin (6 g daily) in critically ill
404 patients: continuous infusion versus three times daily administration. *J Antimicrob
405 Chemother* 2015; **70**: 891-8.
406
408 *Drugs* 1985; **29 Suppl 5**: 106-8.
409
412
413 39. Hayashi Y, Roberts JA, Paterson DL et al. Pharmacokinetic evaluation of piperacillin-
415
417 temocillin, a directed spectrum penicillin for intensive care patients with nosocomial
418 pneumonia: stability, compatibility, population pharmacokinetic studies and breakpoint
420
422 *J Antimicrob Chemother* 2007; **60**: 185-7.
423
424 42. European Committee on Antimicrobial Susceptibility Testing. *Rational documents for
426
427 43. Ambrose PG. Antibacterial drug development program successes and failures: a
Table 1. Parameter estimates of the final population PK model for unbound temocillin in patients undergoing haemodialysis

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Population estimate (%RSE)</th>
<th>SIR 95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Structural model parameters</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_1) (L/70kg) *</td>
<td>22.7 (9.6)</td>
<td>19.3 - 26.4</td>
</tr>
<tr>
<td>(V_2) (L/70kg) *</td>
<td>18.6 (9.7)</td>
<td>15.8 – 21.2</td>
</tr>
<tr>
<td>(Q) (L/h/70kg) *</td>
<td>3.99 (8.0)</td>
<td>3.4 – 4.7</td>
</tr>
<tr>
<td>(KoA) (L/h)</td>
<td>7.83 (17.1)</td>
<td>6.7 – 9.1</td>
</tr>
<tr>
<td>(CL) (L/h/70kg) *</td>
<td>1.43 (12.5)</td>
<td>1.2 – 1.7</td>
</tr>
<tr>
<td>(K_d) (mg/L)</td>
<td>34.3 (21.7)</td>
<td>24.1 – 46.4</td>
</tr>
<tr>
<td>(B_{max}) (mg/L)</td>
<td>117 (12.7)</td>
<td>96.3–142.3</td>
</tr>
<tr>
<td>Inter-individual variability§ (CV%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(V_1)</td>
<td>38.2 (16.6)</td>
<td>31.7 - 49.3</td>
</tr>
<tr>
<td>(V_2)</td>
<td>32.6 (25.3)</td>
<td>21.2 – 49.4</td>
</tr>
<tr>
<td>(CL)</td>
<td>50.2 (18.2)</td>
<td>39.0 – 66.5</td>
</tr>
<tr>
<td>(K_d)</td>
<td>82.1 (23.5)</td>
<td>60.8-106.7</td>
</tr>
<tr>
<td>(B_{max})</td>
<td>42.2 (25.8)</td>
<td>32.2 -58.4</td>
</tr>
<tr>
<td>Inter-occasion variability (CV%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(CL)</td>
<td>16.8 (25.7)</td>
<td>12.5 – 22.6</td>
</tr>
<tr>
<td>Proportional residual variability§ (CV%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unbound</td>
<td>23.0 (18.9)</td>
<td>21.7 – 24.6</td>
</tr>
<tr>
<td>Total</td>
<td>18.0 (18.7)</td>
<td>16.6 – 19.3</td>
</tr>
</tbody>
</table>

RSE, relative standard error (standard error of the estimate/estimatem*100); CV, coefficient of variation; SIR, sampling importance resampling; Q, inter-compartmental clearance; KoA: mass transfer area coefficient; CL, inter-dialytic clearance; \(K_d\), equilibrium dissociation constant; \(B_{max}\), maximal binding capacity.

* allometric model with a standard body weight of 70 kg and an exponent of 1 (to scale the volume of both central and peripheral compartments) or 0.75 (to scale Q and CL).

§ The η-shrinkage for interindividual variability was < 19%; ε-shrinkage was 4.8%.

\(CL_{Dial} = BFR/(\exp(KoA/BFR*(1-BFR/DFR))-1)/(\exp(KoA/BFR*(1-BFR/DFR))-BFR/DFR))^{23}\)
Table 2. Dosing table: proposed temocillin dosage regimen for haemodialysis patients, according to their weight and the interdialytic period.

<table>
<thead>
<tr>
<th>Dry body weight (kg)</th>
<th>Interdialytic period</th>
<th>24h</th>
<th>48h</th>
<th>72h</th>
</tr>
</thead>
<tbody>
<tr>
<td>50 – 54</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>55 – 59</td>
<td>1.5g</td>
<td></td>
<td>3g</td>
<td></td>
</tr>
<tr>
<td>60 – 64</td>
<td></td>
<td></td>
<td></td>
<td>1st dose: 2g</td>
</tr>
<tr>
<td>65 – 69</td>
<td></td>
<td></td>
<td></td>
<td>2nd dose (24h later): 2g</td>
</tr>
<tr>
<td>70 – 74</td>
<td>2g</td>
<td></td>
<td>1st dose: 2.5g</td>
<td></td>
</tr>
<tr>
<td>75 – 79</td>
<td></td>
<td></td>
<td></td>
<td>2nd dose (24h later): 2.5g</td>
</tr>
<tr>
<td>80 – 84</td>
<td></td>
<td></td>
<td>1st dose: 3g</td>
<td></td>
</tr>
<tr>
<td>85 – 89</td>
<td>2nd dose (24h later): 2g</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>90 – 94</td>
<td></td>
<td></td>
<td></td>
<td>2nd dose (24h later): 3g</td>
</tr>
<tr>
<td>95 – 100</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Single or first doses should be administered immediately after dialysis. Interdialytic periods can be considered independent from each other. Dosage regimen were rounded up to the closest 0.5g.
Table 3. Cumulative fraction of response (%) to achieve the target of >40% $f_{T>MIC}$ for *Escherichia coli*, *Klebsiella* spp. and *Enterobacter* spp., with different temocillin dosage regimens, based on published temocillin MIC distributions.34

<table>
<thead>
<tr>
<th>Major β-lactamase isolates</th>
<th>Temocillin dosage regimen</th>
<th>KPC ([MIC_{50/90}: 8/32 \text{ mg/L}]) (n=669)</th>
<th>Other ([MIC_{50/90}: 16/32 \text{ mg/L}]) (n=1251)</th>
<th>All ([MIC_{50/90}: 16/32 \text{ mg/L}]) (n=1920)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Former licensed 0.5g q24h</td>
<td>38.7</td>
<td>37.5</td>
<td>37.9</td>
<td></td>
</tr>
<tr>
<td>Current licensed 1q q24h</td>
<td>67.6</td>
<td>59.7</td>
<td>62.4</td>
<td></td>
</tr>
<tr>
<td>Proposed dosing table 24h</td>
<td>85.9</td>
<td>78.0</td>
<td>80.7</td>
<td></td>
</tr>
<tr>
<td>Former licensed 1g q48h</td>
<td>47.6</td>
<td>44.1</td>
<td>45.3</td>
<td></td>
</tr>
<tr>
<td>Current licensed 2g q48h</td>
<td>73.3</td>
<td>65.5</td>
<td>68.2</td>
<td></td>
</tr>
<tr>
<td>Proposed dosing table 48h</td>
<td>87.0</td>
<td>79.5</td>
<td>82.1</td>
<td></td>
</tr>
<tr>
<td>Current licensed 3g q72h</td>
<td>73.1</td>
<td>66.0</td>
<td>68.5</td>
<td></td>
</tr>
<tr>
<td>Proposed dosing table 72h</td>
<td>87.2</td>
<td>80.0</td>
<td>82.5</td>
<td></td>
</tr>
</tbody>
</table>

Proposed dosage regimens are described in Table 2;
KPC: organisms expressing KPC-type carbapenemases;
q24h, every 24h; q48h, every 48h; q72h, every 72h.
Figure 1. Schematic diagram of the final pharmacokinetic model for temocillin after IV administration. The model parameters are defined in Table 1.
Figure 2. Prediction-corrected visual predictive check (pcVPC) of the final model describing the PK of total and unbound temocillin concentrations, in patients undergoing intermittent haemodialysis. The solid line represents the median observed serum concentrations. The observed 5th and 95th percentiles are represented with dashed lines. The shaded dark grey area represent 95% confidence interval for the simulated-based median, and the shaded light grey areas correspond to the 95% confidence intervals for the simulated-based 5th and 95th percentiles. The prediction-corrected concentrations are plotted as dots in this figure.
Figure 3. Probability of target attainment (PTA) of 40% $f_{T>MIC}$ versus MIC, for simulated temocillin dosage regimens in 4 consecutive dosing cycles (0.5g q24h; 1g q24h; dosing table 24h; 1g q48h; 2g q48h; dosing table 48h; 3g q72h; dosing table 72h). All regimens assume a uniform weight distribution. Displayed values are the 95% confidence lower bound on the binomial estimate of the PTA derived from 5,000 simulated patients per regimen. Greyed field corresponds to the area in which treatment target failed, assuming a MIC and PTA cut-off of 16 mg/L and 90%, respectively. The grey vertical lines indicate the PK/PD breakpoint for each dosage regimen, i.e. the highest MIC for which the PK/PD target of 40% $f_{T>MIC}$=16mg/L is achieved in at least 90% of patients.
Figure 4. Concentration-time profiles based on 5,000 Monte Carlo simulations of unbound temocillin serum concentrations in haemodialysis patients. A typical thrice weekly haemodialysis schedule was simulated for two patient weight (50kg and 100kg) when administered the dosage regimen used in this study, 2g q48h, 2g q48h, 3g 72h (A and B) and with the new proposed regimen, as per table 2 (C and D). Greyed areas correspond to the 95% confidence interval, and solid black line corresponds to the median. The times for the haemodialysis session were 44 to 48h, 92 to 96h, and 164 to 168h (marked by a shaded vertical box).
Supplementary Data

Temocillin dosing in haemodialysis patients based on population pharmacokinetics of total and unbound concentrations and Monte Carlo simulations

Ana C. MIRANDA BASTOS,1,2 Stefaan J. VANDECASTEELE,3 Anne SPINEWINE,2 Paul M. TULKENS,1 Françoise VAN BAMBEKE1,*

1Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels; 2Clinical Pharmacy Research Group, Louvain Drug Research Institute, Université catholique de Louvain, Brussels; 3Department of Nephrology and Infectious Diseases, AZ Sint-Jan Brugge-Oostende AV, Belgium.

Table S1. MIC distributions for E. coli, Klebsiella spp and Enterobacter spp. for temocillin

<table>
<thead>
<tr>
<th>Major β-lactamase</th>
<th>≤1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
<th>32</th>
<th>64</th>
<th>≥128</th>
</tr>
</thead>
<tbody>
<tr>
<td>All isolates</td>
<td>39 (2)</td>
<td>74 (4)</td>
<td>275 (14)</td>
<td>532 (28)</td>
<td>479 (25)</td>
<td>327 (17)</td>
<td>122 (6)</td>
<td>72 (4)</td>
</tr>
<tr>
<td>KPC (n=669)</td>
<td>6 (1)</td>
<td>14 (2)</td>
<td>91 (14)</td>
<td>229 (34)</td>
<td>200 (30)</td>
<td>88 (13)</td>
<td>32 (5)</td>
<td>9 (1)</td>
</tr>
<tr>
<td>other (n=1251)</td>
<td>33 (3)</td>
<td>60 (5)</td>
<td>184 (15)</td>
<td>303 (24)</td>
<td>279 (22)</td>
<td>239 (19)</td>
<td>90 (7)</td>
<td>63 (5)</td>
</tr>
<tr>
<td>total (n=1920)</td>
<td>39 (2)</td>
<td>74 (4)</td>
<td>275 (14)</td>
<td>532 (28)</td>
<td>479 (25)</td>
<td>327 (17)</td>
<td>122 (6)</td>
<td>72 (4)</td>
</tr>
</tbody>
</table>

KPC: Klebsiella pneumoniae carbapenemase,

MIC distributions of the OXA-, VIM-, IMP- and NDM-carbapenemase producers were not considered from the original dataset, as these beta-lactamases confer temocillin resistance.
Figure S1. Actual serum concentration-time profiles

Mean ± standard deviation of total (closed symbols) and free (open symbols) temocillin concentrations for the 1 g (left panel), 2 g (middle panel) and 3 g (right panel) dosing regimens. Greyed areas correspond to the haemodialysis period (4 h), with values shown in a magnified fashion in the inset. Data from Vandecasteele et al.* (reproduced with permission)

Figure S2. Temocillin administration and sampling scheme

Temocillin (TMO) was administered by IV bolus immediately after the intermittent haemodialysis (HD) session. This figure represents a typical ESRD patient that undergoes haemodialysis thrice weekly, on Mondays (Mon), Wednesdays (Wed) and Fridays (Fri). The study protocol foresaw the administration of 1g, 2g or 3g for an inter-dialytic period of 24h, 48h or 72h, respectively. The 24h inter-dialytic period is not represented in this figure.

Temocillin serum concentrations were measured at the following planned time points in relation to the first dose in all patients: 0 (pre-dose sample), 0.5, 3, 6, 12, 20 (before dialysis) and 24h (at the end of dialysis), when patients were dialysed with a 1 day interval; 0, 0.5, 3, 6, 12, 24, 36, 44 (before dialysis) and 48h (at the end of dialysis), when patients were dialysed with a 2 day interval; 0, 0.5, 3, 6, 12, 24, 36, 48, 68 (before dialysis) and 72h (at the end of dialysis) when patients were dialysed with a 3 day interval). Additional blood samples were taken 1, 2, 3h after the start of dialysis.
Figure S3. Temocillin goodness of fit plots

A: observed versus population-predicted concentrations; B: observed versus individual predicted concentrations; C, D: histogram of population residuals; E, F: Q-Q plot of population residuals; G, H: weighted residuals versus time.
Figure S4. Correlation of ETAs

ETA1: between subject variability V_1; ETA2: between subject variability V_2; ETA3: between subject variability K_d; ETA4: between subject variability B_{max}; ETA5: between subject variability clearance; ETA6: between occasion variability, clearance
Figure S5. Normalised prediction errors

A, B: histograms plot of normalized prediction errors estimates (NPDE); C, D: QQ plot of NPDE; E, F: NPDE versus time plots