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    Abstract     Macrolides and ketolides are characterized by a very wide tissular 
distribution, which is related to their capacity to accumulate in the acidic compart-
ments of the cells. This property is considered an advantage, because it concentrates 
the drug at the site of infection. Yet, the low serum levels consecutive to this tissular 
distribution may favor the selection of resistance. Macrolides are essentially bacte-
riostatic and ketolides are slowly bactericidal. The pharmacodynamic indice that 
best predicts effi cacy is the free 24 h-AUC/MIC ratio for both subclasses. Despite 
their high concentration inside the cells, macrolides and ketolides remain bacterio-
static against intracellular bacteria, with a potency similar to that observed extracel-
lularly. New formulations have been developed to optimize patient’s adherence 
(extended release tablets) or to further increase antibiotic concentration at the site of 
infection (powders for inhalation).  

  Keywords     Macrolides   •   Kétolides   •   AUC/MIC   •   Tissue distribution  

        Pharmacokinetic Development of Macrolides and Ketolides 
and Impact of Chemical Structure on Pharmacokinetic 
and Pharmacodynamic Properties 

 Erythromycin, a natural product isolated from  Streptomyces erythreus  (McGuire 
et al.  1952 ), was introduced in the clinic in the mid 1950s and remained for long the 
only large-scale macrolide used. A major limitation of this drug, however, comes 
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from its instability in acidic medium, which results in poor and highly variable bio-
availability. This instability is due to the simultaneous presence of a keto function 
(in position 9) and of an hydroxy function (in position 6), which react in acidic 
medium to generate a spiroketal which is inactive (Fig.  11.1 ) (Kirst and Sides  1989 ). 
A series of macrolides were therefore developed, which showed an improved stabil-
ity because they are unable to form a spiroketal (Fig.  11.1 ). These include 
14- membered macrolides like erythromycylamine (Massey et al.  1970 ,  1974 ), clar-
ithromycin (Fernandes et al.  1986 ; Morimoto et al.  1984 ), roxithromycin (Chantot 
et al.  1986 ), and the 15-membered azalide azithromycin (Bright et al.  1988 ; Djokic 
et al.  1987 ). 16-membered macrolides [spiramycin (Kellow et al.  1955 ), josamycin 
(Nitta et al.  1967 ), midecamycin (Kanazawa and Kuramata  1976 ), miocamycin 
(Kawaharajo et al.  1981 ; Omoto et al.  1976 ), and rokitamycin (Sakakibara et al. 
 1981 )] are intrinsically stable because they do not have a keto function in their mac-
rocycle. In ketolides (Bryskier  2000 ; Van Bambeke et al.  2008 ), acid stability is 
obtained by the lack of cladinose, combined with the substitution of the 6-O posi-
tion as in telithromycin [HMR-3647 (Denis et al.  1999 )], cethromycin [ABT-773 
(Or et al.  2000 )], and solithromycin [CEM-101 (Hwang et al.  2008 )], or of the 
9-keto function (as in modithromycin [EDP-420 (Wang et al.  2004 )]). Beside this 
pharmacokinetic advantage, the chemical modifi cations brought to ketolides also 
improve their antimicrobial activity and favorably modify their pharmacodynamic 
profi le, making them more bactericidal than macrolides at high concentration 
(Drago et al.  2005 ; Zhanel et al.  2002 ). Thus, the heteroalkyl side chain present in 
all ketolides improves the activity against both macrolide-susceptible and resistant 
bacteria by allowing for an additional binding to the domain II of the ribosomal 
subunit, which allows them to keep activity on methylated ribosomes. Moreover, 
because they lack the cladinose sugar, ketolides do not induce methylase expression 
and are not recognized by Mef effl ux pumps in  S. pneumoniae  (Douthwaite  2001 ; 
Douthwaite and Champney  2001 ; Van Bambeke et al.  2008 ).

   Macrolides and ketolides also share a weak basic character because they all possess 
an aminated function on their desosamine moiety that is protonable in acid media. This 
basic character is responsible for their high level of accumulation inside eukaryotic 
cells. As proposed for cationic amphiphilic drugs (de Duve et al.  1974 ), macrolides 
and ketolides can indeed freely diffuse through the membranes in their non-protonated 
form and are then trapped in the acidic compartments of the cells (lysosomes) in their 
less diffusible protonated form (Carlier et al.  1987 ,  1994 ). Some molecules have an 
additional aminated function (erythromycylamine, azithromycin). This may contribute 
to explain the higher cellular accumulation of azithromycin (Carlier et al.  1994 ).  

    Pharmacokinetics 

    General Pharmacokinetic Properties 

 The main pharmacokinetic properties of macrolides and ketolides are summarized 
in Table  11.1 .

F. Van Bambeke
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  Fig. 11.1    Chemical instability of erythromycin and chemical structure of macrolides and 
ketolides. Mechanism responsible for the inactivation of erythromycin in acidic medium. The 
ketone in position 9 reacts with the hydroxyl in position 6 to generate a hemicetal, which reacts 
again with the hydroxyl in 12 to produce a ketal. Both the hemiketal and the ketal are microbiologi-
cally inactive [Adapted from Kirst and Sides ( 1989 )]. Neomacrolides were made acidostable by 
either removing the 9-keto function and replacing it with another function (roxithromycin, eryth-
romycylamine, azithromycin) or by substituting the 6-hydroxyl group (clarithromycin). 
16- membered derivatives are intrinsically stable because of the absence of a ketone function in the 
cycle. Likewise, acid stability in ketolides is obtained by removing of cladinose combined with the 
substitution of the 6-O position (as in telithromycin, cethromycin or solithromycin) or of the 
9-keto function (as in modithromycin)       

 

11 Macrolides and Ketolides
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      Absorption 

 Due to their amphiphilic character, macrolide and ketolide antibiotics are capable of 
diffusing through membranes, and are therefore in general well absorbed by oral 
route, with the maximum concentration reached within 2–3 h. The effect of food 
intake on absorption depends on the formulation, with capsules and powdered sus-
pensions of azithromycin and erythromycin (base or stearate) being best absorbed 
when taken 1 h before or 2 h after meals (Zhanel et al.  2001 ). In most cases, diges-
tive tolerance is improved when the drug is taken with food.  

    Distribution 

 The most striking pharmacokinetic property of macrolides and ketolides is their 
large volume of distribution (Bahal and Nahata  1992 ; Zeitlinger et al.  2009 ), which 
is related to their ability to accumulate inside eucaryotic cells. 

 In humans, macrolides and ketolides distribute largely in most tissues, where 
they reach concentrations that are well above serum concentrations, in keeping with 
their capacity to accumulate in cells. However, their penetration in the CNS is lim-
ited (Kearney and Aweeka  1999 ), and only subtherapeutic levels can be reached in 
this compartment. Penetration in epithelial lining fl uid and in alveolar macrophages 
is best documented (Table  11.2 ). Additional data on penetration in other tissues are 
nevertheless available for azithromycin and telithromycin. For azithromycin, sus-
tained and high concentrations are also found in the lung (Di Paolo et al.  2002 ), 
tonsils (Foulds et al.  1991 ), and prostate (Foulds et al.  1990 ) as well as in infl amed 
blister fl uid (Freeman et al.  1994 ). Telithromycin achieves high and prolonged con-
centrations in the lung (Kadota et al.  2002 ; Khair et al.  2001 ), nasal mucosa and 
ethmoid bone (Kuehnel et al.  2005 ), tonsils (Gehanno et al.  2003 ), female genital 
tract (Mikamo et al.  2003 ), and infl amed blister fl uid (Namour et al.  2002 ). Its free 
concentration in soft tissues (subcutis and muscle) is close to the free serum concen-
tration (Gattringer et al.  2004 ; Traunmuller et al.  2009 ).

   The consequence of this large distribution is that serum levels are relatively low 
(see Table  11.1 ), so that pharmacodynamic indices may be diffi cult to reach in the 
central compartment (see this chapter’s section on pharmacodynamics). However, 
the fact that their tissular and cellular concentrations are high may be an advantage 
for the treatment of infections localized in these compartments (Schentag and 
Ballow  1991 ; Zhanel et al.  2001 ). The slow release of macrolides out of the cells is 
indeed suggested to allow for the progressive release of antibiotic at the site of 
infection (Gladue et al.  1989 ; Hand and Hand  2001 ; McDonald and Pruul  1991 ), 
with white blood cells playing the role of shuttle for the drug (Amsden et al.  1999 ). 
On the other hand, their prolonged retention inside the cells is thought to be a major 
determinant for their activity against intracellular pathogens (Gladue et al.  1989 ; 
McDonald and Pruul  1991 ; Pascual et al.  2001 ). This concept, however, will need 
to be revisited in the light of pharmacodynamics (see section on intracellular 
pharmacodynamics).  

11 Macrolides and Ketolides
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    Elimination 

 Macrolides and ketolides are metabolized through the cytochrome P450 (CYP) 3A 
subfamily, and are also moderate to potent inhibitors of the CYP3A4 pathway, caus-
ing numerous drug–drug interactions (Pai et al.  2006 ; Shakeri-Nejad and Stahlmann 
 2006 ). They are thereafter eliminated via the bile with the exception of clarithromy-
cin, which shows signifi cant elimination in the urine (Fraschini et al.  1993 ). 
Erythromycin shows the shorter and azithromycin the longer half-life, which is cor-
related with their differential cell retention. These differences have important con-
sequences in terms of number of daily administrations (Table  11.1 ) and treatment 
duration in order to optimize pharmacodynamic indices (see section on intracellular 
pharmacodynamics).   

    Cellular Pharmacokinetics 

 The accumulation of macrolides and ketolides has been mainly studied in phagocytic 
cells [macrophages or polymorphonuclear neutrophils (PMN)]. Variable cellular 
concentrations (see Table  11.3 ) have been reported, which can be easily explained by 

    Table 11.2    Distribution of macrolides and ketolides in the respiratory tract   

 Antibiotic (dose) 

 AUC (mg h   L −1 ) 

 Reference 
 Alveolar 
macrophages  Ratio to serum  ELF a  

 Ratio to 
serum 

 Clarithromycin (200 mg)  4,840  190  390  3.5–15  Kikuchi et al. 
( 2008 ) and 
calculated based 
on the data of 
Rodvold et al. 
( 1997 ) 

 Clarithromycin extended 
release (1,000 mgl) 

 5,730  205  179  6.4  Gotfried et al. 
( 2003 ) 

 Azithromycin (500 mg)  1,674  540  7.7  2.5  Lucchi et al. ( 2008 ) 
 Azithromycin extended 

release (2,000 mg) 
 7,028  703  17  1.7  Lucchi et al. ( 2008 ) 

 Telithromycin (800 mg)  5,060  425  184  15  Calculated based 
on the data of 
Muller- Serieys 
et al. ( 2001 ) 

 Cethromycin (300 mg)  636  180  24  6.5  Conte et al. ( 2004 ) 
 Solithromycin (400 mg)  1,500  180  80  10  Rodvold et al. 

( 2012 ) 
 Modithromycin (400 mg)  2,560  245  212  21  Furuie et al. ( 2010 ) 

   a Epithelial lining fl uid  

F. Van Bambeke
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the differences in models and experimental conditions used (concentration range 
and incubation time). Generally speaking, however, azithromycin and ketolides 
accumulate to the highest levels, probably related to the dicationic character of 
azithromycin on the one side and to the greater lipophilicity of ketolides on the 
other side. These drugs distribute mainly in lysosomes, with a smaller proportion 
found in the cytosol (Carlier et al.  1987 ,  1994 ; Labro et al.  2004 ; Togami et al. 
 2010b ; Villa et al.  1988 ). Infl ux transporters have been suggested to play a role in 
the uptake of ketolides in white blood cells (Labro et al.  2004 ; Togami et al.  2010b ; 
Vazifeh et al.  1998 ), but the kinetics of their accumulation and their subcellular 
distribution are fully coherent with a passive mechanism of diffusion–segregation. 
Effl ux from the cells is usually slow, but it can be facilitated by the activity of the 
multidrug transporter P-glycoprotein (Munic et al.  2010 ; Pachot et al.  2003 ; Seral 
et al.  2003b ).

   Table 11.3    Cellular accumulation (cellular to extracellular concentration ratio)  a  of macrolides 
and ketolides as reported in in vitro studies   

 Antibiotic 

 Cell type 

 References  Macrophages  PMN 
 Epithelial cells/
fi broblasts 

 Erythromycin  4–38  8  6–12  Bosnar et al. ( 2005 ), Carlier 
et al. ( 1987 ), Montenez et al. 
( 1999 ), Villa et al. ( 1988 ) 

 Clarithromycin  16  Mor et al. ( 1994 ) 
 Roxithromycin  25–60  14  8–23  Carlier et al. ( 1987 ), Montenez 

et al. ( 1999 ), Villa et al. 
( 1988 ) 

 Azithromycin  40–160  20–517  10–85  Blais et al. ( 1994 ), Bosnar et al. 
( 2005 ), Carlier et al. ( 1994 ), 
Hand and Hand ( 2001 ), 
Lemaire et al. ( 2009 ), 
Mandell and Coleman 
( 2001 ), Montenez et al. 
( 1999 ), Pascual et al. ( 1997 ) 

 Telithromycin  5–71  31–300  8  Bosnar et al. ( 2005 ), Lemaire 
et al. ( 2009 ), Mandell and 
Coleman ( 2001 ), Pascual 
et al. ( 2001 ), Vazifeh et al. 
( 1998 ) 

 Cethromycin  12  207–500  30  Bosnar et al. ( 2005 ), Garcia 
et al. ( 2003 ), Labro et al. 
( 2004 ) 

 Solithromycin  370  Lemaire et al. ( 2009 ) 

   a Extreme values when multiple studies have been published  
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        Pharmacodynamics 

 Antibiotics are categorized as either concentration- or time-dependent drugs. 
Macrolides were for long considered as time-dependent antibiotics, with an effi cacy 
related to the time interval during which their concentration at the infected site 
remains above the MIC of the offending organism (Carbon  1998 ; Craig  1998 ). This 
was suggested based on the fact that their action on bacteria is essentially bacterio-
static, and that their activity can only be maintained as long as the antibiotic remains 
bound to the ribosome (this is similar to what is observed with beta-lactams, but is 
in sharp contrast with aminoglycosides which also impair protein synthesis but also 
cause translation mistakes [and, therefore, lethal events] in direct correlation to their 
concentration). Yet, macrolides show post-antibiotic effects (time necessary to 
observe bacterial regrowth upon drug withdrawal) spanning between one to several 
hours (Dornbusch et al.  1999 ; Odenholt et al.  2001 ), in relation to their particular 
pharmacokinetic profi le, suggesting that time of exposure may not be the only driver 
for effi cacy. 

 Studies in murine pneumonia models showed indeed that not only time during 
which clarithromycin concentration remains above the MIC but also the ratio of the 
area under the concentration–time curve from 0 to 24 h (AUC0-24h) to the MIC and 
the  C  max /MIC were signifi cantly correlated to antibacterial effi cacy, median survival 
time, and total percent survival (Tessier et al.  2002 ). Further animal studies 
(Ambrose et al.  2007 ; Craig et al.  2002 ; Tessier et al.  2005 ) confi rmed that the free 
AUC to MIC ratio is the major PK/PD determinant for the activity of both macro-
lides and ketolides. 

    In Vitro Pharmacodynamic Studies 

    In Vitro Pharmacodynamic Models 

 All macrolides are essentially bacteriostatic compounds, causing no or minimal 
decrease in colony forming units (CFU) (Drago et al.  2005 ; Furneri and Nicoletti 
 1991 ). Ketolides prove slightly more effi cient against gram-positive organisms, 
causing a 1–4 log decrease in CFU of  S. aureus, S. pneumoniae, or S. pyogenes  
over 24 h (Barcia-Macay et al.  2006 ; Drago et al.  2005 ; Kays et al.  2007 ; Woosley 
et al.  2010 ). Their killing activity develops over time but is also concentration 
dependent; it is infl uenced by the bacterial inoculum (Boswell et al.  1998 ). Both 
macrolides and ketolides display post-antibiotic effects that vary between 1 and 8 h 
(Boswell et al.  1998 ; Odenholt-Tornqvist et al.  1995 ); which is suggested to allow 
long dosing interval despite low serum concentrations. Yet, these low concentra-
tions still leave open the question of the risk of facilitating the selection of resistant 
organisms. 

 In vitro pharmacodynamic models have evaluated the effi cacy of macrolides 
and ketolides in conditions that mimic exposure in human serum or tissues after 
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treatment with conventional doses. For clarithromycin, this type of study suggested 
that a bactericidal effect against  S. pneumoniae  could be achieved as soon as time 
above the MIC was ≥ 90 % or the area under the curve to MIC ≥ 61 h; a static 
effect, or even a regrowth, was observed when these values fell to 8 % and 17.3 h. 
These pharmacodynamic indices are easily reached in epithelial lining fl uid than in 
serum, which may explain the microbiological success observed in the treatment of 
pneumonia for isolates with MIC as high as 8 mg L −1  (Noreddin et al.  2002 ). 
Roxitromycin was less effective than azithromycin when simulating their respec-
tive pharmacokinetics in tonsils. Regrowth was observed after 6 h against  S. pneu-
moniae  and 26 h against  S. pyogenes  with roxithromycin, while viable counts 
reached the limit of detection in 8–10 h with azithromycin, with no regrowth within 
48 h (Firsov et al.  2002 ). Likewise, simulated free azithromycin concentrations in 
serum, epithelial lining fl uid, and middle ear fl uid allow to maintain the concentra-
tion above the MIC during 100 % of the time, and an area under the curve to MIC 
ratio ≥36.7 h against macrolide-susceptible  S. pneumoniae,  resulting in a bacteri-
cidal effect (Zhanel et al.  2003 ). Yet, insuffi cient coverage was obtained against 
resistant strains (Zhanel et al.  2003 ), as well as against gram-negative bacteria like 
 H. infl uenzae  or  M. catharralis  (Treyaprasert et al.  2007 ). For telithromycin, a 
bactericidal effect was observed when simulated concentrations in serum and epi-
thelial lining allowed to reach a  C  max /MIC ≥ 3.5 and an area under the curve to 
MIC ≥ 25 h, but a bacteriostatic effect was observed when these exposures were 
twice lower. This means that telithromycin at its conventional dosage should be 
able to eradicate streptococci with an MIC of 0.25 mg L −1  in serum and 1 mg L −1  in 
epithelial lining fl uid (Zhanel et al.  2005 ). This type of approach also led to the 
conclusion that at human- simulated exposure, telithromycin can achieve higher 
AUC/MIC ratios than clarithromycin against  S. pneumoniae , and therefore higher 
chances of microbiological eradication, while the contrary holds true for  S. aureus  
(Alferova et al.  2005 ). Fewer data are available for the other ketolides. Cethromycin 
was shown to be bactericidal, even against macrolide-resistant strains (Neuhauser 
et al.  2003 ). Modithromycin activity is AUC/MIC dependent, as the other ketolides, 
with simulated values of approximatey 10 and 16–20 h required to reach a maximal 
effect against  H. infl uenzae  and  S. pneumoniae,  respectively (Homma et al.  2010 ) .  
The latter value is thus of the same order of magnitude as what has been reported 
for telithromycin.  

    Intracellular Pharmacodynamics 

 Because of their high level of accumulation inside eucaryotic cells, macrolides 
are claimed to be active against intracellular pathogens. They are, indeed, active 
in vitro against numerous bacteria causing intracellular infections, like  Legionella, 
Chlamydia  (Blackman et al.  1977 ; Horwitz and Silverstein  1983 ), or  Mycobacteria  
(Wildfeuer and Haberreiter  1997 ). However, in vitro models comparing them 
with other antibiotic classes suggest that their intracellular activity is rather lim-
ited, because of (a) their bacteriostatic character and (b) the defeating effect on 
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their intrinsic activity of the acidic pH prevailing in lysosomes (see Fig.  11.2  for 
an illustration). In-depth studies following the infl uence of time or of concentra-
tion on intracellular activity show indeed that azithromycin was only able to 
prevent the intracellular growth of bacteria sojourning in the cytosol like  L. mono-
cytogenes  or in vacuoles like  S. aureus  and to cause a minor (<1 log) reduction in 
the intracellular counts of  L. pnemophila  (Barcia-Macay et al.  2006 ; Carryn et al. 
 2002 ; Lemaire et al.  2009 ). The importance of cellular concentration for activity 
is further illustrated by the fact that inhibitors P-glycoprotein allow to reach this 
maximal effect upon exposure to lower extracellular concentrations, by increas-
ing the antibiotic concentration in the infected compartment (Seral et al.  2003a ,  b ). 
A ketolide like solithromycin systematically showed an increased maximal effi -
cacy (1–1.5 log decrease), but this was not the case for telithromycin, at least 
against  S. aureus  (Lemaire et al.  2009 ). It therefore appears that other parameters 
than accumulation and distribution need to be taken into account in the intracel-
lular activity of antibiotics, among which the expression of activity in the 
intracellular environment, the bacterial responsiveness, and the cooperation with 
cell defense mechanisms probably play a central role (Carryn et al.  2003 ; Van 
Bambeke et al.  2006 ).

  Fig. 11.2    Comparison of the extracellular and intracellular activity of macrolides and ketolides 
against  S. aureus  ATCC25923 and of their cellular accumulation in a model of THP-1 human 
monocytic cells. Activity was evaluated after 24 h of incubation in broth ( left panel ) or in infected 
cells ( middle panel ) with each antibiotic, using a wide range of extracellular concentrations span-
ning from 0.0001× and 1,000× its MIC (the  dotted line  corresponds to a bacteriostatic effect). 
Cellular accumulation was measured after 24 h of incubation of non-infected cells with 10 mg L −1  
of each drug ( CLR  clarithromycin,  AZM  azithromycin,  TEL  telithromycin,  SOL  solithromycin). 
One can see that despite high levels of cellular accumulation, macrolides and ketolides are less 
effective against intracellular than against extracellular  S. aureus , with only solithromycin being 
able to reach a −1 log intracellular effect. Likewise, potencies (evaluated by the static concentra-
tions, i.e. the concentrations for which there is no change form the initial inoculum) are of the same 
order of magnitude against extracellular and intracellular bacteria, with no clear correlation with 
the respective level of accumulation of each drug. Adapted from Lemaire et al. ( 2009 )       
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        Animal Models 

 Early studies suggested that macrolides were time-dependent antibiotics (Carbon 
 1998 ; Craig  1998 ). This concept has been revised over the last 10 years, so that it is 
now accepted that the parameter determining effi cacy in vivo is AUC/MIC for both 
macrolides and ketolides (See Fig.  11.3 ).

   Tessier and coworkers were the fi rst to suggest an interdependency between time 
above the MIC, AUC/MIC, and  C  max /MIC ratio when studying the activity of clar-
ithromycin in a model of murine pneumonia (Tessier et al.  2002 ) and came thus to 
the conclusion that AUC/MIC ratio is the best predictor of effi cacy. Almost at the 
same time, Craig and coworkers refi ned this concept by correlating effi cacy to the 
free AUC/MIC ratio, with a value of 20–35 h being needed to reach a static effect 
for both macrolides and ketolides in a model of pneumonia in neutropenic mice 
(Craig et al.  2002 ). Under these conditions, static effects can still be observed with 
strains showing low level of resistance (effl ux-mediated resistance mainly) 
(Hoffman et al.  2003 ; Noreddin et al.  2002 ). Tissular penetration was also 

  Fig. 11.3    Correlation between effi cacy of clarithromycin ( upper panel ) or telithromycin ( lower 
panel ) against  S. pneumoniae  ATCC10813 and PK/PD parameters in the neutropenic mouse 
model. The  graphs  show that the effi cacy of clarithromycin correlates with AUC/MIC and time 
above MIC, while that of telithromycin correlates with AUC/MIC and to a lower extent  C  max /MIC. 
Adapted from Craig et al. ( 2002 ) and Vesga et al. ( 1997 )       
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recognized as a major determinant in effi cacy, since drugs with longer tissular half-
life appeared more effective in a model of pneumonia in leucopenic mice (Veber 
et al.  1993 ). Infi ltration of infl amed tissues by phagocytes could further help increase 
local concentration of macrolides (Girard et al.  1990 ; Schentag and Ballow  1991 ), 
but the acidic pH of most abscesses is deleterious to their activity. 

 Tessier and coworkers demonstrated later that free AUC/MIC ratio was predic-
tive of telithromycin effi cacy in the same pneumonia model, with stasis observed for 
values ranging between 20 and 100 h and maximal effect for values > 200 h. In simi-
lar experiments, the free AUC/MIC ratio was confi rmed to be the main determinant 
of effi cacy for cethromycin, with static effect reached at a value of 50 h (Kim et al. 
 2002 ). For solithromycin, stasis was obtained with an AUC/MIC ratio of about 1.4 h 
for the free fraction in the serum or the total drug in the ELF (Andes et al.  2010 ). 

 In vivo pharmacodynamic studies of macrolide activity against intracellular bac-
teria confi rm their poor effi cacy, with azithromycin causing a 0.2 log drop in intra-
cellular counts in a model of  S. aureus  peritonitis (Sandberg et al.  2009 ). This goes 
thus against the idea that intracellular breakpoints could be higher because of the 
high accumulation of these drugs (Amsden  2001 ).  

    Human Pharmacodynamics 

 Pharmacodynamics of macrolides and ketolides have also been examined in humans, 
with the aim of determining target attainments rates and for rationalizing dosages of 
currently used molecules or establishing those of molecules in development. 

 For registered drugs, Noreddin and coworkers showed that, upon treatment with 
conventional dosages, the probability of attainment of a free AUC/MIC 90  target of 
30 h in serum or ELF was systematically higher for telithromycin (99 % in serum; 
100 % in ELF) than for clarithromycin (91.3 % in serum, 99.9 % in ELF) and even 
more than for azithromycin (81.3 % in serum, 82.3 % in ELF) against susceptible 
pneumococci (Noreddin et al.  2009 ). For telithrmoycin, Lodise and coworkers pro-
posed that a fAUC/MIC ratio of 3.375 h in serum and of 27 h in ELF can predict 
microbiological eradication (Lodise et al.  2005 ). They attribute these low values to 
the high local concentration of the drug at the site of infection and/or its delivery 
from PMN migrating to the site of infection. In pharmacodynamic studies examining 
other ketolides vs  S. pneumoniae,  Conte and coworkers reported that treatment with 
150 or 300 mg cethromycin allows to reach an AUC/MIC 90  of approximately 110 
and 340 h, respectively (Conte et al.  2004 ), which is well above the proposed target 
of 50 (Kim et al.  2002 ). Furuie and coworkers reported an AUC/MIC 90  of 84 h in 
patients having received 400 mg modithromycin (Furuie et al.  2010 ), but no target 
value has been proposed for this drug so far. With respect to solithromycin, recent 
data suggest that at dose of 800 mg at day one followed by a daily dose of 400 mg 
allows to reach the target of ELF AUC/MIC > 1.3 h for stasis (Andes et al.  2010 ) with 
a probability of 99.9 % for MICs as high a 1 mg L −1  (Okusanya et al.  2010 ). 
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 Table  11.4  shows the proposed PK/PD targets for these compounds and compares 
the PK/PD breakpoints that can be calculated on this basis with the susceptibility 
breakpoints from CLSI and EUCAST. One can see that the current susceptibility 
breakpoints are of the same order of magnitude as the PK/PD breakpoints, suggest-
ing they correctly take into account pharmacodynamic criteria.

        New Formulations 

    Extended Release 

 In spite of the already long half-life of macrolides, extended release formulations 
have been developed by pharmaceutical companies in order to obtain appropriate 
AUCs while at the same time reducing the number of daily administrations. 
Figure  11.4  and Table  11.2  compare the pharmacokinetic properties of these formu-
lations with those of the corresponding immediate release formulation. The extended 
release formulation of clarithromycin allows giving the daily dose in a single admin-
istration, with almost no change in pharmacokinetic parameters as far as AUC is 
concerned (Gotfried et al.  2003 ; Guay et al.  2001 ). The serum concentration remains 
longer above the susceptibility breakpoint and sustained levels are obtained in epi-
thelial lining fl uid and macrophages.

   An extended release form of azithromycin has also been registered. Because of the 
extended half-life of this drug, this formulation allows for a single dose treatment. 

   Table 11.4    PK/PD target for macrolides and ketolides and corresponding breakpoints   

 Antibiotic  PK/PD target 
 fAUC 
(h) 

 PK/PD 
bkpt 
(mg L −1 ) 

 CLSI 
bkpt (S≤; 
mg L −1 ) 

 EUCAST 
bkpt (S≤; 
mg L −1 ) 

 Reference 
for PK/
PD target 

 Clarithromycin  fAUC/MIC > 20–30 h  ~23  ~0.8  0.25  0.25  Tessier 
et al. 
( 2002 ) 

 Roxithromycin  fAUC/MIC > 20–30 h  ~7  ~0.25  0.5 
 Azithromycin  fAUC/MIC > 20–30 h  ~2  ~0.07  0.5  0.25  Tessier 

et al. 
( 2002 ) 

 Telithromycin  fAUC/MIC > 3.375 h  ~2.5  ~0.75  1  0.25  Lodise 
et al. 
( 2005 ) 

 Cethromycin  AUC/MIC > 50 h 
corresponding 
to a fAUC/MIC 
of ~ 5 h 

 ~1.6  ~0.03  NA  NA  Kim et al. 
( 2002 ) 

 Solithromycin  fAUC/MIC > 1 h  ~2  2  NA  NA  Andes 
et al. 
( 2010 ) 
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The formulation, which has been developed using the microsphere technology, 
increases the serum AUC from 3.1 mg h L −1  to 10 mg h L −1 , which is not negligible 
in view of the low serum concentrations of this drug (Lucchi et al.  2008 ). It also 
maintains the serum concentration above the susceptibility breakpoint for 24 h and 
increases the exposure to the drug in ELF as well as inside macrophages (Lucchi 
et al.  2008 ) or in sinuses (Ehnhage et al.  2008 ; Fang et al.  2009 ). Of interest also, the 
overall exposure (AUC 0–120 h ) is similar or even slightly higher in serum or in white 
blood cells after administration of a single dose of extended release formulation vs. a 
3 days treatment with the 500 mg immediate release form; C min  at 120 h is similar 

  Fig. 11.4    Comparative pharmacokinetics of clarithromycin and azithromycin with immediate 
release and extended release formulations in serum, epithelial lining fl uid (ELF), and alveolar 
macrophages (AM). For clarithromycin ( upper panel ), volunteers received nine doses of 500 mg 
immediate release form every 12 h or fi ve doses of 1,000 mg extended release form; pharmacoki-
netics was evaluated after the last dose [constructed based on data from Gotfried et al. ( 2003 ), 
Rodvold et al. ( 1997 )]. For azithromycin ( lower panel ), volunteers received a single dose of 
500 mg immediate release form or of 2,000 mg extended release form [constructed based on data 
from Lucchi et al. ( 2008 )]. The  dotted horizontal line  corresponds to the EUCAST susceptibility 
breakpoint of each drug (0.25 mg L −1 )       

 

F. Van Bambeke



271

with the two dosage regimens as well (Liu et al.  2007 ). As for the immediate release 
formulation, effi cacy best correlates with the AUC/MIC ratio, with signifi cantly 
higher success rates observed when this ration is >5 (Muto et al.  2011 ). It should be 
kept in mind, however, that the dose administered is 2 g instead of 500 mg for the 
immediate release formulation, but no difference in tolerability between the two for-
mulations has been reported so far (Lucchi et al.  2008 ). This formulation may thus 
offer an opportunity of optimizing patient adherence (Swainston and Keam  2007 ).  

    Aerosols 

 Beside their indications in respiratory tract infections, macrolides are also widely used 
in cystic fi brosis or bronchiolitis where they have shown their potential in improving 
respiratory function through their immuno-modulatory and anti- infl ammatory effects 
(Shinkai et al.  2008 ). It is therefore not surprising that aerosol formulations of macro-
lides are now being developed. Azithromycin dry powder inhalers (Zhang et al.  2010 ) 
have been evaluated in rats. The best formulation allows to deliver high concentrations 
in the respiratory tracts with an AUC in the ELF that is 161-fold higher than that 
obtained with a same dose administered by IV route and a bioavailability of 43 %. 
Likewise, telithromycin aerosols are also investigated, but rather for the treatment of 
pulmonary infections (Togami et al.  2010a ), with again higher concentrations in lung 
epithelial lining fl uid and alveolar macrophages and lower concentrations in serum 
than following the administration of an oral formulation.   

    Conclusion 

 The pharmacokinetic profi le of macrolides and ketolides is essentially characterized 
by their wide tissular distribution due to their accumulation in the lysosomal com-
partment of the cells. This however, does not necessarily translate in high effi cacy 
against intracellular bacteria because of the bacteriostatic (or slowly bactericidal for 
ketolides) character of their activity and of the deleterious effect of acid pH on their 
activity. Pharmacodynamic studies have shown that the free AUC/MIC ration is the 
best predictor of effi cacy. Yet, the high volume of distribution of these drugs also 
translates in low serum concentrations and therefore low AUC in the central com-
partment. PK/PD breakpoints take however this limitation into account and clearly 
defi ne the conditions for rationally using these drugs.     
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