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 Ketolides differ from macrolides by removal of the 3- O -cladinose (replaced by 
a keto group), a 11,12- or 6,11-cyclic moiety and a heteroaryl-alkyl side 
chain attached to the macrocyclic ring through a suitable linker. These 
modifications allow for anchoring at two distinct binding sites in the 23S 
rRNA (increasing activity against erythromycin-susceptible strains and 
maintaining activity towards  Streptococcus pneumoniae  resistant to 
erythromycin A by ribosomal methylation), and make ketolides less prone to 
induce methylase expression and less susceptible to efflux in  S. pneumoniae . 
Combined with an advantageous pharmacokinetic profile (good oral 
bioavailability and penetration in the respiratory tract tissues and fluids; 
prolonged half-life allowing for once-a-day administration), these 
antimicrobial properties make ketolides an attractive alternative for the 
treatment of severe respiratory tract infections such as pneumonia in areas 
with significant resistance to conventional macrolides. For telithromycin (the 
only registered ketolide so far), pharmacodynamic considerations suggest 
optimal efficacy for isolates with minimum inhibitory concentration values 
 ≤  0.25 mg/l (pharmacodynamic/pharmacokinetic breakpoint), calling for 
continuous and careful surveys of bacterial susceptibility. Postmarketing 
surveillance studies have evidenced rare, but severe, side effects 
(hepatotoxicity, respiratory failure in patients with myasthenia gravis, visual 
disturbance and QTc prolongation in combination with other drugs). 
On these bases, telithromycin indications have been recently restricted by 
the US FDA to community-acquired pneumonia, and caution in patients at risk 
has been advocated by the European authorities. Should these side effects 
be class related, they may hinder the development of other ketolides such 
as cethromycin (in Phase III, but on hold in the US) or EDP-420 (Phase II).  
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  1.   From macrolides to ketolides 

 Ketolides in present clinical use or in development are semisynthetic derivatives of 
erythromycin A with activity against clinically important erythromycin-resistant 
organisms.  

 The structural characteristics responsible for this property are: i) removal of the 
cladinose normally present at position 3 and its replacement by a keto-group 
(hence the name ketolides); ii) incorporation of an 11,12- or 6,11-cyclic moiety; 
and iii) addition of a heteroaryl-alkyl side chain attached to the macrocyclic ring 
by a suitable linker. 
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 Macrolides lacking cladinose were actually identified 
almost at the same time as erythromycin A (or even before), 
as natural products such as picromycin or narbomycin. 
These molecules, however, had a weak antibacterial potency 
and a poor oral absorption and were not further developed 
until it was demonstrated in the late 1970s that they do not 
induce resistance in  Staphylococcus aureus , while at the same 
time remaining active against strains having developed 
resistance to erythromycin A and other conventional 
macrolides     [1] . As macrolides, picromycin and narbomycin 
inhibit protein synthesis by binding to the 50S ribosomal 
subunit, close to the peptidyl transferase site at the entrance 
of the ribosomal exit tunnel ( Figure 1 ). Thus, both types of 
molecules interact with nucleotides A2058 and A2059 in 
the domain V, but the lack of cladinose makes this binding 
less tight for picromycin or narbomycin. To improve their 
activity, a systematic pharmaco-chemical development was 
initiated at Roussel-Uclaf in 1988, but starting from 
erythromycin A, which was well known and had a better 
bioavailability than narbomycin. This led to a series of 
compounds derived from erythromycin A, but lacking the 
cladinose and presenting an additional, flexible hetero-aryl-alkyl 
side chain attached via a suitable linker to the macrocyclic 
ring. This allows the molecules to bind to an additional site 
on the ribosome (namely in the vicinity of A752 in domain II), 
and markedly increases their affinity for the ribosomes. As a 
result, they are more active against erythromycin-susceptible 
strains, and remain capable of interacting with ribosomes 
from erythromycin-resistant organisms in which the A2058 
nucleotide is methylated (through the activity of the  erm  gene; 
 Figure 1 ; see for reviews     [2,3] ). The lack of cladinose 
also makes ketolides unable to act as inducers in strains 
presenting the inducible form of this resistance. In addition, 
it may prevent recognition of the molecule by the 
Mef efflux pumps, at least in pneumococci     [4] . Ketolides 
remain, however, susceptible to resistance by efflux in 
 Streptococcus pyogenes      [5] . 

 This discovery stimulated active research in order to 
design other molecules with similar or improved properties. 
Many of them have now been obtained, allowing us to 
refine our view of structure–activity relationships within this 
family ( Figure 2 ), and leading to a subclassification of the 
ketolides (see     [4,6,7]  for reviews and     [8,9]  for an original 
description of the chemistry of ketolides compared with that 
of macrolides). So far, three main families have been 
described giving rise to compounds with clinical use or 
demonstrated potential, in which the aryl-alkyl chain has 
been attached in position 11, 6 or to both positions. In the 
later case, the keto group in position 9 is also replaced by an 
iminoether (see  Figure 2 ). In the 11- N -ketolides group, the 
hetero-aryl-alkyl side chain is attached to the macrocycle 
through the N atom of a 11,12-cyclic carbamate     [10,11] , with 
telithromycin (HMR-3647)     [12] , the first ketolide in clinical 
use, as a typical example. In the 6- O -ketolides group, the 
hetero-aryl-alkyl group is attached to the macrocycle through 

the O atom in position 6 of the lactone ring     [13-18] . 
Cethromycin (ABT-773) is a typical example of this family     [19]  
and is presently in Phase III of clinical trials (but its 
development seems now on hold     [20] ). In the so-called 
bridged bicyclic ketolides, the heteroaryl side chain is 
attached to an oxime moiety centered on a three-carbon 
bridge linking the 6- and 11-hydroxyl groups of the 
macrocycle (hence the name bridged bicyclic). EDP-420 
(also known as EP-013420 or S-013420     [21] ) is the first 
example of these compounds being brought forward and is 
in Phase II of clinical development. 

 Acid stability (essential to obtain a high and reproducible 
oral bioavailability) of the above-mentioned compounds is 
ensured by the lack of cladinose on the one side     [9] , as well 
as by methylation of the 6- O  position for telithromycin 
(as in clarithromycin), and by the linker used to attach the 
heteroaryl-alkyl side chain for cethromycin and EDP-420. 
In EDP-420, the 9-keto function of erythromycin has also 
been replaced by an acetylimino function. These modifications 
indeed prevent the ketalisation reaction occurring in 
erythromycin A between the keto group in position 9 and 
the hydroxyle group in position 6 or 3     [22] . 

 Many other investigational compounds belonging to other 
subfamilies (such as 2-fluoroketolides     [23-25] , C-9 iminoether 
ketolides in which the carbamate has been replaced by a 
carbonate     [26-28] , C-12 or C-13 modified ketolides     [29,30] , 
15-membered ring ketolides     [31] , and tricyclic or tetracyclic 
ketolides     [32] ) have also been described, but the corresponding 
derivatives seem still far from clinical development.  

  2.    In vitro  antibacterial activity and resistance 

  Table 1  compares the  in vitro  activity of the three ketolides 
in clinical use or development to that of erythromycin A 
against bacteria responsible for respiratory tract infections, 
including intracellular pathogens. Erythromycin-susceptible 
strains, telithromycin and cethromycin, and EDP-420 to 
some extent, show much lower minimum inhibitory 
concentration (MIC) values, as anticipated from their design. 
Most interestingly also, their MIC values are only modestly 
increased (one to three dilutions) against streptococci with 
the efflux or ribosomal methylation mechanism of resistance. 
Constitutive ribosomal mutations, however, make both 
telithromycin and cethromycin inactive towards  S. aureus , 
and, for telithromycin, towards  S. pyogenes      [33,34] . As for 
erythromycin A, ketolides show low MIC values towards 
atypical and intracellular pathogens involved in pneumonia     [35]  
and respiratory Gram-negative bacteria     [36] . Notably, they 
prove as active as azithromycin and more active than other 
macrolides against intracellular  Legionella  both in  in vitro  
and  in vivo  models     [37-39] . However, like erythromycin A 
and most other conventional macrolides, ketolides remain 
poorly active against  Haemophilus influenzae . This is actually 
no surprise as their design was not specifically oriented towards 
an improvement of activity against Gram-negative organisms. 
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Figure 1. Comparison of the mode of interaction of erythromycin A and telithromycin with 23S rRNA (see also [3,148]). 
A. View onto the ribosomal exit tunnel entrance of the 50S model from Deinococcus radiodurans (D.r, D50S), 23S rRNA is displayed as 
mint surface (Ade2058 is marked in blue, E. coli numbering used for fi gures). Macrolides like erythromycin A (Ery, grey) and ketolides like 
telithromycin (Teli, yellow) inhibit translation by blocking the ribosomal exit tunnel [3,149] and thus prevent the nascent peptide chain to 
move forward, which leads to translation arrest in most cases. B. Zoom and slightly different orientation of A. Methylation or mutation 
A- > G of Ade2058 has as consequence that the hydrogen bond of the desosamine-moiety (d) of the macrolides/ketolides to 2058 
(see also C) is not possible and that the antibiotic needs to be shifted away from A2058. The cladinose moiety (cl), close to the 
tunnel wall (pink line) restricts possible positionings of the macrolides (Ery, grey) for alternative binding to ribosomes with mutated or 
methylated 2058. Ketolides (Teli, yellow) lacking the cladinose have much more room for an alternative positioning which, together 
with the additional, stabilizing binding of their alkyl-aryl side chain, can overcome A2058 methylation/mutations in many bacteria. 
C. Macrolides and ketolides bind in similar mode to the ribosome. The lactone ring overlaps with high agreement and the hydrogen bonds 
(green dotted) between Ade2058 (of 23S; Nat, native, position in the absence of antibiotic; teli, position in the presence of telithromycin) 
and the desosamine-moieties differ only slightly for telithromycin (yellow, 2058 in green) and erythromycin A (grey, 2058 in pink) in D50S. 
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Figure 1. Comparison of the mode of interaction of erythromycin A and telithromycin with 23S rRNA (see also [3,148]) (continued). 
D. Comparison of position and conformation of telithromycin bound to D50S (yellow) and to a G2058A mutated Haloarcular marismortui 
50S subunit (H.m., H50S, in cyan) [150], show the lactone ring position in good agreement whereas the alkyl-aryl side chain adopts 
dramatically different orientations (arrowed). In D50S the alkyl-aryl side chain penetrates deeper into the tunnel, contacting nucleotides 
of dom II of 23S, binding mainly through stacking to U790. For the A2058G mutated H50S the orientation of the alkyl-aryl side chain 
has been found folded back across the lactone ring, interacting to nucleotides of dom VI of 23S rRNA. Dom II of 23S rRNA is very similar 
for D50S and H50S. Nevertheless there is a dramatic difference: C790 not only has a different ‘sequence’ but also shows to be about 
180 deg rotated away compared to D50S (arrowed) which offers less options for interaction for the side chain with dom II in H50S. 
E. About 85 deg rotated view of D. For the sake of clarity only the main binding nucleotides are shown. In H50S-A2058E the alkyl-aryl-side 
chain (cyan) is stacking to 2609 of dom VI (brown). This way there is no remarkable additional contact to dom II compared to macrolides. 
Covering a similar area as the cladinose-moiety of macrolides, this positioning of the side chain in H50S leads to a similar restriction of the 
free room for the adoption of an alternative orientation of the antibiotic in case of a 2058 mutation or methylation. Note: Telithromycin 
does not bind to native H50S (G2058) [150]. The complexes of D50S and H50S with telithromycin demonstrate the highly mobility of its 
alkyl-aryl side chain, which is an advantage for overcoming macrolide resistance and structural variations between bacteria. F. Secondary 
structure of H33-H35 of the E. coli 23S rRNA, with the conservation of this region based on 436 bacterial sequences, nucleotides close 
to telithromycin (D.r.) are marked green [151]. In general the single stranded rRNA of the dom II binding region is relatively well conserved 
(> 80% or better). Nevertheless, fl exible extensions of ketolides that reach the dom II region are supposed to deal better with small 
variations in sequence and structure of this area of the 23S-rRNA.
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Table 1. In vitro activity of ketolides (telithromycin, cethromycin, EDP-420) compared with erythromycin A 
(or clarithromycin).

Phenotype Drug MIC50 
(mg/l)

MIC90 
(mg/l)

MIC range 
(mg/l)

Nb 
strains

Ref.

Staphylococcus aureus Macrolide susceptible Erythromycin A 0.5 1 0.12 – 1 60 [34]

Telithromycin 0.03 0.06 0.008 – 0.5 60 [34]

Cethromycin 0.008 0.03 0.008 – 0.25 60 [34]

All (both susceptible 
and resistant) 

Erythromycin A > 32 > 32 ≤ 0.03 – > 32 100 [138]

Telithromycin 0.13 > 32 ≤ 0.03 – > 32 100 [138]

EDP-420 0.13 > 32 ≤ 0.03 – > 32 100 [138]

Inducible ribosomal 
methylation 

Erythromycin A > 32 > 32 0.5 – > 32 47 [34]

Telithromycin 0.12 0.5 0.03 – 0.5 47 [34]

Cethromycin 0.03 0.06 0.004 – 0.12 47 [34]

Constitutive ribosomal 
methylation 

Erythromycin A > 32 > 32 16 – > 312 60 [34]

Telithromycin > 32 > 32 0.06 – > 32 60 [34]

Cethromycin > 32 > 32 ≤ 0.008 – 32 60 [34]

Streptococcus pneumoniae All (both susceptible 
and resistant)

Erythromycin A 0.06 32 ≤ 0.015 – > 64 312 [139]

Telithromycin ≤ 0.015 0.25 ≤ 0.015 – > 4 312 [139]

Cethromycin 0.008 0.06 ≤ 0.004 – > 16 312 [139]

EDP-420 0.03 0.25 ≤ 0.015 – 2 200 [138]

Effl ux Erythromycin A 4 8 2 – 16 50 [140]

Telithromycin 0.12 0.25 0.008 – 1 50 [140]

Cethromycin 0.06 0.12 ≤ 0.004 – 0.25 50 [140]

EDP-420 0.12 0.5 ≤ 0.015 – 0.5 40 [138]

Ribosomal methylation Erythromycin A > 128 > 128 2 – > 128 45 [140]

Telithromycin 0.008 0.5 0.008 – 8 45 [140]

Cethromycin 0.03 0.25 0.008 – 2 45 [140]

EDP-420 0.06 0.5 ≤ 0.015 – 2 20 [138]

Effl ux plus ribosomal 
methylation

Erythromycin A > 128 > 128 0.5 – > 128 39 [34]

Telithromycin 0.12 0.25 ≤ 0.002 – 0.5 39 [34]

Cethromycin 0.06 0.25 ≤ 0.002 – 0.5 39 [34]

Streptococcus pyogenes Susceptible Erythromycin A 0.06 0.06 0.03 – 0.12 60 [140]

Telithromycin 0.03 0.03 0.004 – 0.25 60 [140]

Cethromycin 0.03 0.03 ≤ 0.004 – 0.03 60 [140]

EDP-420 ≤ 0.03 ≤ 0.03 ≤ 0.03 – 0.13 102 [138]

Effl ux Erythromycin A 8 8 2 – 16 10 [140]

Telithromycin 0.06 0.25 0.008 – 0.5 10 [140]

Cethromycin 0.06 0.12 0.008 – 0.25 10 [140]

MIC: Minimum inhibitory concentration; nd: No data provided.
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Table 1. In vitro activity of ketolides (telithromycin, cethromycin, EDP-420) compared with erythromycin A 
(or clarithromycin) (continued).

Phenotype Drug MIC50 
(mg/l)

MIC90 
(mg/l)

MIC range 
(mg/l)

Nb 
strains

Ref.

Inducible ribosomal 
methylation 

Erythromycin A 16 32 2 – 128 10 [140]

Telithromycin 0.12 0.5 0.008 – 2 10 [140]

Cethromycin 0.12 0.25 0.008 – 2 10 [140]

Constitutive ribosomal 
mutation

Erythromycin A > 128 > 128 2 – > 128 35 [141]

Telithromycin 2 8 0.03 – 8 35 [141]

Cethromycin nd nd 0.01 – 1 8 [33]

Moraxella catarrhalis Macrolide susceptible Erythromycin A 0.12 0.25 0.12 – 0.5 428 [140]

Telithromycin 0.06 0.12 0.015 – 0.25 428 [140]

Cethromycin 0.06 0.12 0.015 – 0.25 428 [140]

Haemophilus infl uenzae Macrolide susceptible Erythromycin A 4 8 0.03 – 32 213 [140]

Telithromycin 2 4 0.06 – 8 213 [140]

Cethromycin 2 4 0.03 – 8 213 [140]

Chlamydia pneumoniae Macrolide susceptible Erythromycin A 0.15 0.25 0.015 – 0.25 19 [35]

Telithromycin 0.0625 0.25 0.031 – 2 19 [35]

Cethromycin 0.015 0.015 0.008 – 0.015 20 [35]

Legionella pneumophila Macrolide susceptible Clarithromycin ≤ 0.004 ≤ 0.004 nd 20 [35]

Macrolide susceptible Telithromycin 0.03 0.03 nd 20 [35]

Cethromycin 0.016 0.064 0.004 – 0.125 20 [38]

Mycoplasma pneumoniae Macrolide susceptible Erythromycin A ≤ 0.001 ≤ 0.004 ≤ 0.001 – 0.016 103 [142]

Telithromycin 0.0005 0.0005 0.0002 – 0.0005 nd [143]

Cethromycin ≤ 0.001 ≤ 0.001 ≤ 0.001 – 0.016 103 [142]

EDP-420 0.001 0.001 0.0005-0.001 nd [143]

MIC: Minimum inhibitory concentration; nd: No data provided.

On a positive side, low or lack of significant activity against 
Gram-negative pathogens may be viewed as an advantage 
in terms of lesser impact on resistance development in 
commensal and non-respiratory bacteria     [36] . 

  2.1   Resistance to ketolides 
 Based on Clinical and Laboratory Standards Institute (CLSI) 
breakpoints (S:  ≤  1 mg/l; I: 2 mg/l; R:  ≥  4 mg/l), 
most clinical isolates of streptococci collected through 
surveillance studies can still be classified as telithromycin 
susceptible. Pharmacokinetic/pharmacodynamic considerations 
(see next paragraph), however, suggest that the 
pharmacokinetic/pharmacodynamic breakpoint of telithromycin 
should be lower (see  Table 2 ), so that a non-negligible 
proportion of isolates should actually be considered as the 
‘reduced susceptibility’ type (see e.g.,     [40,41] ). Examination of 
a collection of 1640 strains of  Streptococcus pneumoniae , 
indeed, shows that the telithromycin MIC distribution is 
bimodal, with 30% of the isolates displaying higher MIC 

(0.06 – 0.5 mg/l) than the main population. These 
correspond essentially to erythromycin-resistant strains 
(with the  erm  mechanism)     [42] ; the weaker activity of 
telithromycin in these strains may result from dimethylation 
at A2058 nucleotide, as shown in  S. pyogenes      [43] . 

 True ketolide-resistant pneumococcal strains have also 
begun to emerge, even though they remain anecdotal so far. 
A recent PROTEKT (Prospective Resistant Organism Tracking 
and Epidemiology for the Ketolide Telithromycin) study 
reports indeed 0.1% of the 20750 strains with a telithromycin 
MIC  ≥  4 mg/l     [44] . More local data suggest that this 
prevalence could be much higher, with heterogeneous 
telithromycin resistance detected in 13% of macrolide-
resistant  S. pneumoniae  in Finland     [45] , and 15% of 
pneumococci displaying an MIC  ≥  2 mg/l in Taiwan     [46] . 

 The situation is probably more alarming for  S. pyogenes , 
with telithromycin resistance reaching 5.8 and 10% 
of erythromycin-resistant isolates from Greece and Belgium, 
respectively     [47,48] . This resistance to telithromycin has 
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been associated with mutations in domains II and V of 
23S rRNA as well as in L22 or L4 ribosomal 
proteins     [49-57] . However, resistance by efflux was also 
demonstrated in clinical isolates and of  S. pyogenes  
with MIC values  ≥  0.5 mg/l     [5]  and considered to account 
for the intrinsic poor  susceptibility of  H. influenzae      [58] . 
Telithromycin MIC may rise to  ≥  4 mg/l when efflux 
is combined with ribosomal mutations. 

 Two other mechanisms of resistance to telithromycin have 
also been described. The first one consists in the production 
of ‘incomplete’ or class 2 ABC transporters (called MsrA 
in  S. aureus  and MsrD in  S. pneumoniae ), which confers 
 resistance to macrolides and, in some cases, also to 
 streptogramins B, lincosamides or ketolides     [59] . These 
proteins act by reducing the accessibility of the ribosomal 
target site for the antibiotics, reducing in proportion the 
driving force for antibiotic import     [60] . The second one is 
related to the production of macrolide phosphorylases, 
which confers cross-resistance to all macrolides and 
ketolides     [61] , and is seen in Gram-negative bacteria. 

 Other ketolides should in principle be also affected by 
resistance mechanisms reducing telithromycin activity, but 
cross-resistance data are lacking so far.   

  3.   Pharmacokinetics and pharmacodynamics 

  Table 2  shows the main pharmacokinetic parameters of 
telithromycin and cethromycin, and the corresponding 
calculated pharmacodynamic breakpoints. 

 Both drugs are characterized by relatively low serum 
concentrations, which can be ascribed to their large volume 
of distribution. As macrolides, these drugs are weak bases 
due to the presence of the aminated desosamine sugar 
(see  Figure 2 ), which causes their preferential accumulation 
by proton trapping in the acidic compartments of the cells 
(see for review     [62] ). An active mechanism requiring protein 
kinase A- and tyrosine kinase-dependent phosphorylation 
was also proposed to occur     [63] , but the corresponding 

macrolide carrier was never evidenced. Thus,  in vitro  studies 
demonstrate that ketolides accumulate to high levels in both 
phagocytic and non-phagocytic cells     [64-66] . Their cellular 
disposition can, however, be modulated by the activity of 
multidrug transporters. It has been shown that telithromycin 
is a substrate for P-glycoprotein in macrophages     [67] , which 
could affect its activity towards intracellular pathogens 
(as demonstrated for azithromycin     [68] ), and for P-glycoprotein 
and MRP2 in the liver, which contribute to its biliary 
elimination     [69] . In humans, ketolide concentrations are 
 ∼  10-times higher in the epithelial lining fluid (ELF) and
 ∼  100-times higher in alveolar macrophages than in the 
serum ( Table 2 ). Telithromycin was also found to reach 6- and 
1.6-times higher AUC in the nasal mucosa and in the eth-
moid bone than in the plasma     [70] . These properties suggest 
a favorable distribution as far as respiratory tract infections 
are concerned. Ketolides, like some hemisynthetic macrolides 
(roxithromycin, azithromycin), show a prolonged half-life 
allowing for their once-daily administration. 

 Pharmacodynamic animal models of pouch infection 
suggest that the best predictor for ketolide efficacy is the 
([free AUC]/MIC) ratio, which needs to reach a value of at 
least 25 h -1      [71] . In a thigh infection model, a ([free AUC]/MIC) 
ratio > 200 h -1  is required to reach a maximal effect     [72] . 
Due to the large distribution of the drugs out of the blood 
compartment, pharmacodynamic breakpoints based on 
serum concentrations are quite low, and close (or even lower 
for cethromycin) to the MIC values of target organisms 
(see  Tables 1  and  2 ). Because target infections for ketolides 
are localized in the respiratory tract, one could, therefore, 
object that ([free AUC]/MIC) ratios reached in the ELF for 
extracellular bacteria and in macrophages for intracellular 
bacteria would be more representative. This is probably not 
the case, as preliminary studies with cethromycin using 
 animal models of acute pneumonia show that a 100% 
survival can be achieved for ([free serum AUC]/MIC) ratios 
of 10 h -1 , corresponding to a ([free lung AUC]/MIC) ratio 
of 125 h -1 , but that success rate is reduced to 86% for 

Table 2. Main pharmacokinetic parameters of telithromycin and cethromycin.

Drug Dose Compartment Cmax (mg/l) AUC (mg·h/l) Half-life 
(h)

Prot. 
binding 
(%)

PD Bkpt 
(fAUC/MIC > 25) [71]

Ref.

Telithromycin 800 mg po Serum 1.9 – 2.5 10.4 – 13.4 9.8 – 13.3 70 ∼ 0.2 [80]

ELF* 5 – 36 ∼ 160‡ [144,145]

Alveolar cells* 22 – 126 ∼ 4300‡ [144,145]

Cethromycin 300 mg po Serum 0.5 3.1 4.94 90 ∼ 0.015 [146]

ELF* 2.75 24.2 [146]

Alveolar cells* 55.4 636.2 [146]

*At day 5.
‡Value calculated from pharmacokinetic profi le in these compartments  [145].
ELF: Epithelial lining fl uid; PD Bkpt: Maximal MIC for which a (free AUC/MIC) ratio > 25 can be reached (pharmacodynamic criterium of effi cacy); po: By mouth.
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([free lung AUC]/MIC) ratio of 63 h -1      [73] . This suggests 
that breakpoints based on tissular accumulation only over-
estimate the true activity of the drugs. Likewise, despite 
their high cellular accumulation, macrolides and ketolides 
show disappointing efficacy in models of cells infected by 
 S. aureus , probably due to their lack of bactericidal effect 
and to the defeating influence of acid pH on their activity     [74] . 
They proved also less efficient than quinolones in models 
of intracellular infection by  Legionella      [37] . 

 Moving now to human data, pharmacokinetic population 
analysis of patients receiving telithromycin for community-
acquired pneumonia predicts that 90% eradication would be 
achieved for a ([total serum AUC]/MIC) ratio of 3.38 h -1 , 
with 100% target attainment rate up to MIC values of 
1 mg/l for  S. pneumoniae, Moraxella catarrhalis  and 
 H. influenzae      [75] . In contrast,  in vitro  simulation of patients 
infected with macrolide-susceptible or macrolide-resistant 
 S. pneumoniae  suggests that eradication would require much 
higher ([free serum AUC]/MIC) ratios (25 h -1 ; corresponding 
to a ([free ELF AUC]/MIC) ratio of  ∼  180 h -1      [76] ). The 
corresponding pharmacodynamic breakpoint would then be 
 ∼  0.2 mg/l only. Success is accordingly observed for patients 
suffering from pneumonia caused by  S. pneumoniae  or 
 S. aureus  with lower MIC values (activity towards  H. influenzae  
remains a matter of debate)     [77] . On these bases, the 
European Committee on Antimicrobial Susceptibility Testing 
(EUCAST) has proposed as breakpoints for telithromycin 
S  ≤  0.25 mg/l and R > 0.5 mg/l ( [78]  definitive values will 
be published early in 2008). These breakpoints are 
considerably lower than the CLSI- and FDA-breakpoints, 
which will have an impact on the interpretation of the 
surveillance studies. 

 Telithromycin has a bioavailability of  ∼  60%     [79,80] , allowing 
administration by the oral route. Quite surprisingly, 
however, only the oral formulation has been commercialized 
so far, which may constitute a limitation to its use in severely 
ill patients. The drug is eliminated both by renal and hepatic 
routes, so that it does not require dosage adjustments in 
patients with single organ insufficiency. A 50% dose reduction 
is, however, recommended for patients with major renal 
impairment (Cl cr  < 30 ml/min) and concomitant hepatic 
insufficiency. Because of side effects discussed later in this 
review, telithromycin is contraindicated in patients with 
previous history of hepatitis and/or jaundice associated with 
the use of macrolides. 

 As macrolides, ketolides are substrates and inhibitors for 
CYP3A4. Although this effect is much weaker than for 
erythromycin A, it may cause clinically relevant drug 
interactions     [79] , which are listed in  Table 3 . Case reports 
also document severe side effects in patients receiving 
telithromycin associated with verapamil     [81]  or digoxin     [82] . 
Moreover, ketolides share with macrolides the capacity of 
prolonging QTc interval, which may increase the risk of 
 Torsades de pointes  in patients receiving other drugs affecting 
the electrocardiogram     [83,85] . Drug interactions could also be 

mediated by the capacity of macrolides and ketolides to 
impair the activity of transporters, as demonstrated  in vitro  
for pravastatin in hepatocytes     [84] . Yet, the significance of 
this mechanism of drug interaction remains difficult to 
assess  in vivo , due to the multiplicity of transporters with 
different specificities and orientations, and of their 
widespread localisation in the body.  

  4.   Clinical effi cacy and use 

  4.1   Approved clinical indications 
 Telithromycin is, so far, the only approved antibiotic among 
the ketolides. It received registration in 2001 in Europe and 
in 2004 in the US, with original indications including acute 
bacterial sinusitis, acute bacterial exacerbations of chronic 
bronchitis and mild-to-moderate (because of lack of 
 intravenous formulation) community-acquired pneumonia in 
adults (no paediatric dosage available). In Europe, it also 
received approval for tonsillitis/pharyngitis caused by group A 
streptococci, as an alternative when  β -lactams are not 
appropriate. In 2007, the use of telithromycin was restricted 
in the US to community-acquired pneumonia for safety 
reasons     [85,86] . 

 The next part of this section discusses these indications in 
light of what is known about telithromycin efficacy and 
safety, and the current guidelines. 

 Respiratory tract infections are the major reason for 
antibiotic prescribing in the community     [87-89] . Thus, 
pharyngitis and sinusitis represent 1 – 2 and 0.2 – 0.4%, 
respectively of annual visits of adult patients to their general 
practitioners     [90,91] . The prevalence of chronic obstructive 
pulmonary disease is increasing in industrialized countries, 
reaching  ∼  5% in smokers     [92,93] . The incidence of 
community-acquired pneumonia is  ∼  2.3% of the US 
population, but higher in elderly or young people; it leads 
to patient hospitalisation in  ∼  25% of the cases and remains 
a major cause of mortality     [94,95] . 

 Most often, the treatment of these infections is 
established on an empirical basis, in the absence of results 
from microbiologic diagnostic tests     [96] . 

 In such a situation, the choice of first-line drugs needs to 
take into account resistance trends. In particular, the prevalence 
of erythromycin resistance in  S. pneumoniae  is so high in 
several regions of the world that these drugs can no more be 
considered as first-line therapy in the absence of 
microbiologic data     [97] . The emergence of multiresistant 
clones also further complicates drug selection.  

  4.2   Pharyngitis 
 The original European studies showed a similar efficacy of 
telithromycin compared with standard therapy for this 
indication, but these were either performed in countries of 
low erythromycin resistance, or/and included patients 
infected with macrolide-susceptible strains only     [98-100] . This 
explains why telithromycin received approval in Europe as 
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an alternative to  β -lactams and as other macrolides. The use 
of telithromycin in pharyngitis is nevertheless disputable 
because it does not cover  S. pyogenes  with constitutive 
MLS B  phenotype ( Table 1 ). Thus, telithromycin was not 
approved in the US for pharyngitis because the studies 
submitted at the FDA showed reduced efficacy compared 
with standard therapies using  β -lactams, probably due to the 
inability of telithromycin to eradicate erythromycin-resistant 
 S. pyogenes      [83] .  

  4.3   Acute sinusitis 
 Telithromycin 800 mg once daily during 5 days proved 
superior to azithromycin 500 mg/day during 3 days in the 
eradication of  S. pneumoniae  from the nasopharynx of 
patients with acute sinusitis, mainly due to the selection of 
erythromycin-resistant pneumococci during azithromycin 
therapy     [101] . Several studies (reviewed by     [83,102] ) document 
that 5 days therapy with telithromycin is as efficient as 
10 days therapy with  β -lactams (amoxicillin/clavulanic acid 

or cefuroxime axetil)     [103-107]  or with moxifloxacin     [108] . 
Note, however, that test-of-cure visits in all these studies 
took place after day 10, and that shorter treatments with 
comparators were not examined, preventing us from drawing 
conclusions relative to the comparison of treatment duration 
with these drugs. In fact, current guidelines recommend 
a treatment duration of 7 days with moxifloxacin and of 
10 days with  β -lactams in this indication     [109,110] .  

  4.4   Acute exacerbations of chronic bronchitis 
 Five days treatment with telithromycin was as efficient as 
10 days treatment with amoxicillin/clavulanic acid or 
cefuroxime axetil     [111,112] , with again test-of-cure evaluation 
performed at day 17 – 21. The eradication rates were 
higher with telithromycin when the isolated pathogen was 
 S. pneumoniae  or  M. catarrhalis , but lower when it was 
 H. influenzae . Telithromycin treatment was also equivalent to 
10 days therapy with clarithromycin b.i.d., and was associated 
with fewer unscheduled out-patient visits and hospitalisations 

Table 3. Drug interactions with ketolides (most of them have been documented so far for telithromycin).

Mechanism of drug interaction Co-administered drug Consequence Ref.

CYP3A4 inhibition by co-administered drug Ketoconazole, itraconzole ↑ Cmax and ↑ AUC of telithromycin [79]

CYP3A4 induction by co-administered drug Rifampicin ↓↓ Cmax and ↓↓ AUC of telithromycin [79]

Inhibition of metabolism of co-administered 
drug by telithromycin

Simvastatin (CYP3A4) ↑↑ Cmax and ↑↑ AUC [79]

Midazolam (CYP3A4) ↑↑ Cmax and ↑↑ AUC [79]

Cisapride (CYP3A4) ↑ Cmax and ↑ AUC [79]

Repaglinide (CYP3A4, CYP2C8) ↑ Cmax and ↑ AUC [79]

Ethynylestradiol/levonorgestrel ↑ AUC levonorgestrel; no change in 
contraceptive effi cacy

[79,80]

Ergotamine Not evaluated for ethical reason; risk 
of increased exposure and of ergotism 

[85]

Barbuturics 
Penytoïn
Carbamazepine 
Cyclosporin
Tacrolimus

Not evaluated; risk of increased 
exposure

[85]

Metoprolol (CYP2D6) ↑ Cmax and ↑ AUC [147]

Theophilline (CYP1A2) ↑ Cmax and ↑ AUC [79]

Warfarine (CYP2C9) Low ↑ Cmax and low ↑ AUC [79]

Reduction of drug metabolism due to 
change in gut microfl ora

Digoxine ↑ Cmax and ↑ AUC [79,80]

Decreased absorption Sotalol ↓ Cmax and ↓ AUC [79]

Neutralization of gastric pH Ranitidine ↓ Cmax and ↓ AUC for cethromycin [7,79]

Additive effect Antiarythmic drugs (class IA and III) 
Cisapride 
Antipsychotics 
Fluoroquinolones 
Pentamidine 
Antimalarials
Methadone

Prolongation of QTc interval, 
risk of Torsades de pointes

[85]

Single arrow: Maximum twofold change.
Double arrow: More than twofold change.
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for respiratory-related causes     [113] . A recent double-blind, 
randomized, placebo-controlled study also shows clear 
benefit on the respiratory function of telithromycin in acute 
exacerbations of asthma     [114] . The mechanism of this effect 
remains unclear, as it is not related to the bacteriologic status 
of the patients. Possibly, an anti-inflammatory effect could 
take place and contribute to improve the patient status, as 
described for macrolides in patients suffering from cystic 
fibrosis, asthma or panbronchiolitis     [115,116] .  

  4.5   Community-acquired pneumonia 
 Four randomized, double-blind     [117-120]  and 
4 open-label     [121-123]  studies were supporting the FDA dossier 
of telithromycin     [83] . They compared 800 mg/day telithromycin 
for 7 – 10 days with clarithromycin (500 mg b.i.d.), 
amoxicillin (1000 mg three times a day) for 10 days, or 
trovafloxacin 200 mg once daily for 7 – 10 days. These 
studies excluded patients with severe symptoms and who 
needed parenteral antibiotics. A similar cure rate was reached 
in telithromycin-treated patients as in comparator groups, 
including in patients aged > 65 years, with bacteremia or 
with a Fine score > III     [102,124] . Bacterial eradication rate was 
 ∼  90% in the telithromycin groups, including for patients 
infected by penicillin- and erythromycin-resistant pneumococci 
or by atypical pathogens     [102] . Note, however, that the 
proportion of erythromycin-resistant pneumococci in these 
studies was quite low ( ∼  5%), which prevented demonstrating 
an advantage of telithromycin over macrolides. 

 In the last release of the Infectious Diseases Society of 
America guidelines     [125] , the place for telithromycin is not 
specifically addressed: ‘ At present, the committee is awaiting 
further evaluation of the safety of telithromycin by the US Food 
and Drug Administration before making its final recommendation 
regarding this drug .’ Macrolides appear as first-line therapy in 
out-patients with no co-morbidities or risk factors for drug-
resistant pneumonia. In the European Respiratory Society 
guidelines     [126] , macrolides are proposed as an alternative to 
 β -lactams, but the authors state that ‘ clinical experience with 
telithromycin is too limited to make specific recommendations .’   

  5.   Safety issues 

 In Phase II/Phase III studies, telithromycin was judged as 
safe as its comparators     [83,124,127] , with most frequent side 
effects including diarrhoea, nausea, headache (5 – 10%), 
dizziness, vomiting, loose stools, dysgeusia (1.5 – 4%) and 
reversible increase in transaminase levels (0.2 – 2%) 
and hepatitis (0.07%). 

 Postmarketing surveillance studies, however, have 
evidenced three cases of severe hepatotoxicity, one of which 
was fatal and another which required liver transplantation     [128] . 
On these bases, the European Medicines Agency (EMEA) 
asked the sponsor in January 2006 to add stronger warnings 
about potential liver problems to the telithromycin 
Summary of Product Characteristics (SPC [labeling]). The 

EMEA statement was the following: ‘ Cases of serious acute 
hepatitis, including liver failure, some of which were fatal, have 
been reported to and assessed by the EMEA in the context of the 
continuous monitoring of the safety of KETEK. The reported 
serious liver reactions started during or immediately after 
treatment with KETEK and were, in most cases, reversible after 
use of this product was discontinued  ’     [129] . Likewise, the FDA 
recommended in May 2006 to add a ‘black box’ warning to 
the KETEK labeling, stating that ‘ severe, life-threatening, and 
in some cases fatal liver toxicity has been reported in patients 
taking KETEK  ’     [86] . As a consequence, in February 2007, 
the FDA and the sponsor agreed on an updated label for 
telithromycin, which narrowed its use to community-acquired 
pneumonia. The other previously approved indications were 
thus dropped in the US. This restrictive measure has not 
been applied so far in Europe. A question here is whether 
the safety data from the study submitted to FDA registration 
had not been falsified in favor of the drug and whether 
FDA should not have reacted earlier, based on the first 
reports of toxicity     [130,131] . 

 And the story is not yet finished. In February 2007, 
a new warning box was added in the KETEK labeling     [85,86] , 
stating that the drug is ‘ contraindicated in patients with 
myasthenia gravis. There have been reports of fatal and life-
threatening respiratory failure in patients with myasthenia gravis 
associated with the use of KETEK .’ Of note, some cases were 
already reported as early as in 2003, forcing Aventis to send 
a warning letter to prescribers (see     [132]  for review on this 
side effect of telithromycin). Phase IV studies also evidenced 
rare cases of visual disturbances (mainly blurred vision in 
young ladies) and loss of consciousness, including some 
cases associated with vagal syndrome. 

 Last but not least, telithromycin has the potential to 
prolong the QTc interval of the electrocardiogram in some 
patients. Cases of  Torsades de pointes  have been reported 
postmarketing, which calls for caution in patients receiving 
class IA or class III antiarythmic drugs or other drugs susceptible 
to prolong QTc interval (including cisapride, antipsychotics, 
fluoro quinolones, pentamidine, antimalarials, arsenic trioxide, 
and methadone     [133] ) as well as in patients with ongoing 
proarrhythmic conditions such as uncorrected hypokalemia or 
hypomagnesemia, or clinically significant bradycardia     [85] .  

  6.   Expert opinion 

 The main bacterial target of ketolides is  S. pneumoniae , 
the key pathogen in respiratory tract infections. Erythromycin-
resistance in this bacterial species is globally increasing     [97] , 
most likely in relation to the wide use of macrolides in the 
community     [134,135] . Prevalence of erythromycin resistance 
seems also higher in countries using preferentially azithromycin 
over other macrolides     [136] , probably in relation with the 
low serum levels of azithromycin. 

 In such a context, ketolides appear as the most obvious 
successors to macrolides for community-acquired infections 
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where  S. pneumoniae  can be considered as the most 
likely causative organism and in areas where resistance to 
erythromycin A is high. Their oral route and once-daily dosage 
make them also highly suitable for use in the community. 
These properties also justify the use of telithromycin as 
alternative to  β -lactams in respiratory tract infections 
(patients intolerant to  β -lactams; risk of infection by a 
penicillin-resistant strain). What remains less clear so far is 
the respective positioning of ketolides versus the so-called 
‘respiratory’ fluoroquinolones     [125,126] . The main drawbacks 
of fluoroquinolones, often presented to justify a limitation 
in their use in respiratory tract infections, include a (too) 
broad spectrum of activity, an easy selection of resistance, 
and the risk of multiple side effects     [137] . Similar weaknesses 
may, however, also counterbalance the advantages of ketolides 
enumerated above. First, large-scale use will certainly favor 
the emergence of resistance, which has already begun to 
be described (the low serum levels of ketolides, and of 
cethromycin in particular, may reproduce the situation seen 
with azithromycin). Second, the occurrence of rare, but 
serious, side effects may lead to restrictions and/or voluntary 
withdrawal, as seen with several fluoroquinolones in the 
past     [137] . As the interest of using antibiotics in non-severe 

upper respiratory tract is debatable, the decision of keeping 
telithromycin for truly worthy indications such as pneumonia 
seems wise, especially if it can be combined with pro-active 
surveillance studies aiming at documenting the susceptibility 
of the causative organisms to this antibiotic. Forthcoming 
ketolides will certainly be examined with caution with 
respect to these issues. 

 In a broader context, the example of ketolides, as well as 
that of fluoroquinolones, should trigger industry, guideline 
makers and authorities to reanalyze the overall process of 
antibiotic discovery, registration and usage, while maintaining 
it economically viable and susceptible to meet the rising 
risks of multi-drug resistance. 
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