Multidrug-Resistant *Streptococcus* pneumoniae Infections

Current and Future Therapeutic Options

Françoise Van Bambeke,¹ René R. Reinert,² Peter C. Appelbaum,³ Paul M. Tulkens,¹ and Willy E. Peetermans⁴

1 Unité de Pharmacologie Cellulaire et Moléculaire, Université Catholique de Louvain, Brussels, Belgium

2 Institute for Medical Microbiology, National Reference Center for Streptococci, University Hospital (RWTH), Aachen, Germany

3 Department of Pathology, Hershey Medical Center, Hershey, Pennsylvania, USA

4 Department of Internal Medicine-Infectious Diseases, Katholieke Universiteit Leuven, University Hospital Gasthuisberg, Leuven, Belgium

Supplementary Material

This supplementary material contains the figures referred to in the full version of this article, which can be found at http://drugs.adisonline.com.

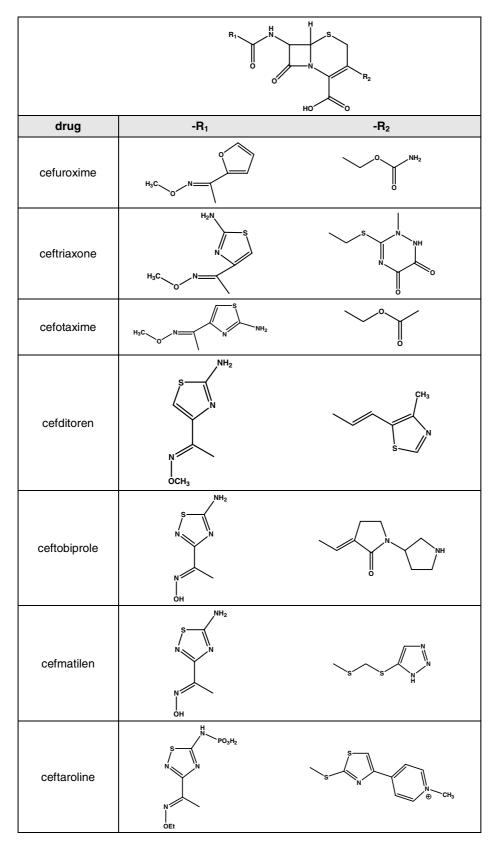
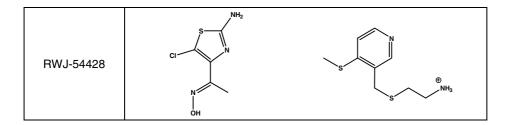



Figure 1. Chemical structures of reference cephalosporins and of derivatives in development that are characterised by a high *in vitro* activity towards *S. pneumoniae*.

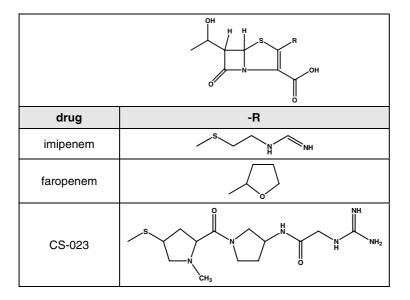


Figure 2. Chemical structures of a reference carbapenem and of derivatives in development that are characterised by a high *in vitro* activity towards *S. pneumoniae*.

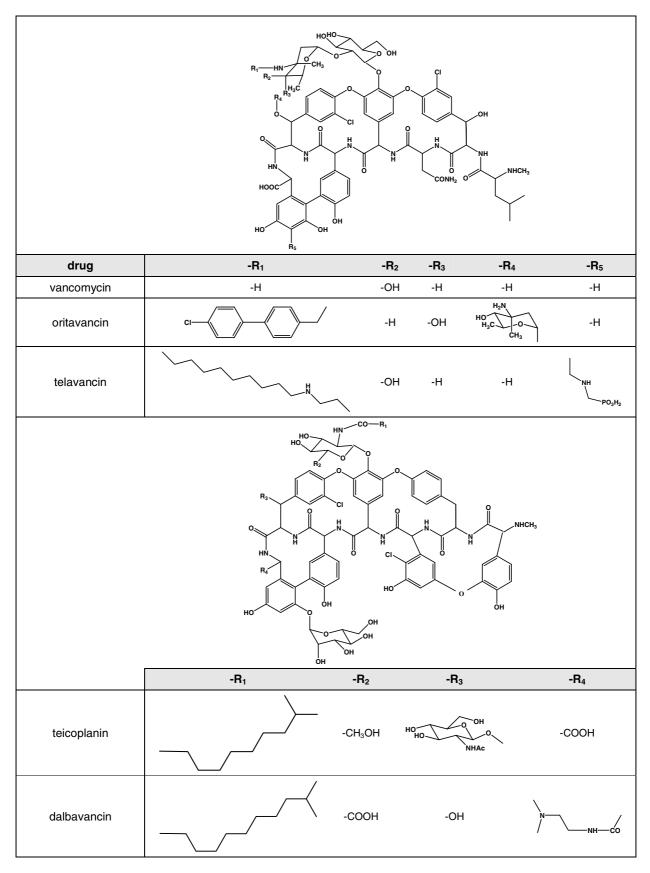


Figure 3. Chemical structures of reference glycopeptides and of derivatives in development that are characterised by a high *in vitro* activity towards *S. pneumoniae*.

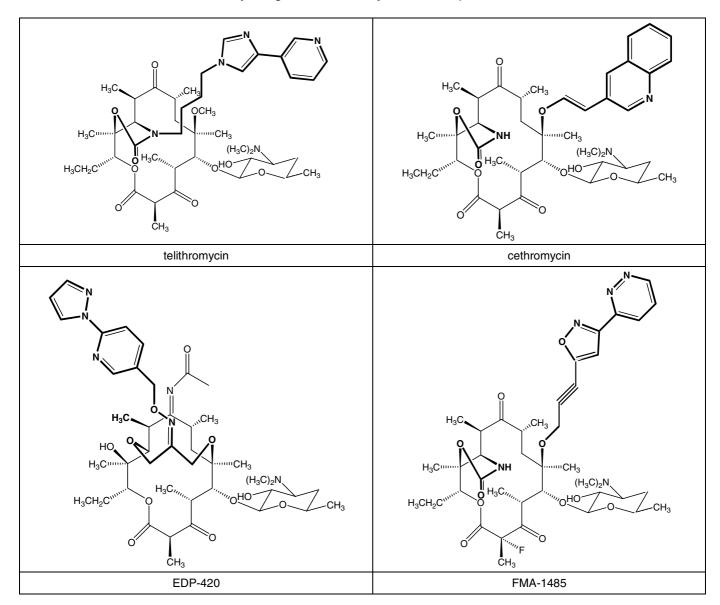
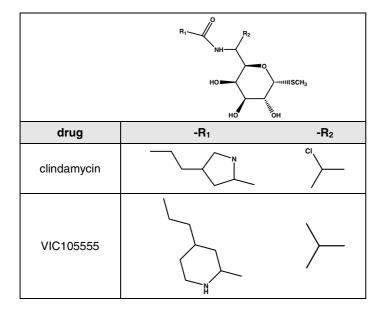



Figure 4. Chemical structures of a reference ketolide and of derivatives in development that are characterised by a high *in vitro* activity towards *S. pneumoniae.*

Figure 5. Chemical structures of a reference lincosamide and of a derivative in development that is characterised by a high *in vitro* activity towards *S. pneumoniae*.

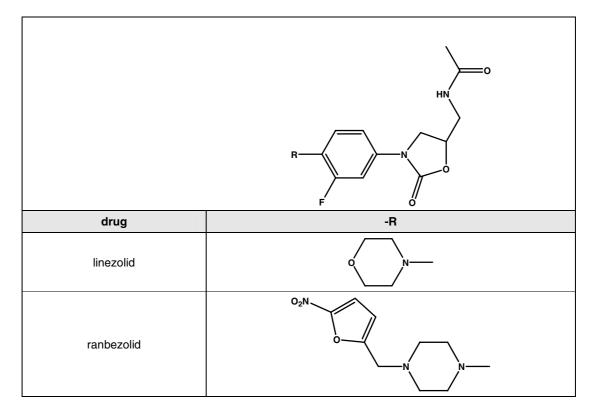


Figure 6. Chemical structures of a reference oxazolidinone and of a derivative in development that is characterised by a high *in vitro* activity towards *S. pneumoniae*.

$\begin{array}{ c c c c c c c c c c c c c c c c c c c$								
drug	-R4	-R3	-R2	-R1				
tetracycline	-H	-OH	-H	-H				
doxycycline	-H	$-CH_3$	-H	-OH				
tigecycline		-H	-N(CH ₃) ₂	-CH₃				
PTK-0796		-H	-N(CH ₃) ₂	-CH₃				

Figure 7. Chemical structures of reference tetracyclines and of derivatives in development that are characterised by a high *in vitro* activity towards *S. pneumoniae*.

			R ₅ R ₇ K ₈		соон	
drug	Х	-R ₈	-R ₁	-R₅	-R ₆	- R ₇
levofloxacin		C CH3		-H	-F	N
moxifloxacin	С	-O-CH₃	\downarrow	-H	-F	H H
gemifloxacin	Ν		\downarrow	-H	-F	NH ₂
garenoxacin	С	-O-CHF ₂	\square	-H	-H	HN
sitafloxacin	С	-Cl	F	-H	-F	H ₂ N
WCK-771		CC N CC CH ₃		-H	-F	HO-NN
WCK-1152	С	-O-CH₃	\downarrow	-H	-F	
WCK-1153	С	-O-CH₃	${\frown}$	-H	-F	H ₃ C H ₃ H ₂ N N
DX-619	С	-O-CH ₃	F	-H	-F	NH ₂
DK-507k	С	-O-CH₃	F	-H	-F	H ₂ N
DC-159a	С	-O-CH₃	F	-H	-F	NH2 NH2

Figure 8. Chemical structures of reference quinolones and of derivatives in development that are characterised by a high *in vitro* activity towards *S. pneumoniae.*

DW-224a	N		\land	-H	-F	HN
PGE 9262932	С	-O-CH₃	\land	-H	-F	H H
olamufloxacin	С	-CH ₃	\downarrow	-NH₂	-F	H ₂ N

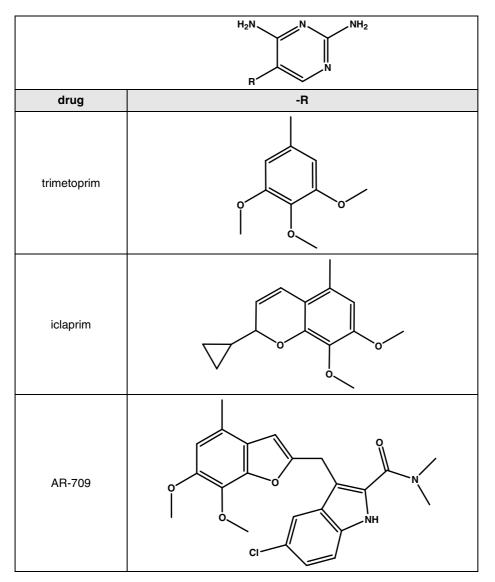


Figure 9. Chemical structures of a reference diaminopyridine and of derivatives in development that are characterised by a high *in vitro* activity towards *S. pneumoniae*.