Clin Microbiol Infect 2005; 11: 245-247

Comparison of three differential media for the presumptive identification of yeasts

M. Yucesoy, O. A. Özbek and S. Marol

The Editor-in-Chief apologises for the incorrect spelling of the second author's name in [1]. The correct spelling is as shown above.

Clin Microbiol Infect 2005; 11: 256-280

Quinolones in 2005: an update

F. Van Bambeke¹, J. -M. Michot¹, J. Van Eldere² and P. M. Tulkens¹ ¹Unité de pharmacologie cellulaire et moléculaire, Université catholique de Louvain, Brussels; ²Departement voor Microbiologie en Immunologie, Rega Instituut and Universitaire Ziekenhuis, Katholieke Universiteit Leuven, Louvain; Belgium

CMI is pleased to republish the authors' affiliations as shown above [2]. In addition, a corrected version of Table 2 appears below.

Table 2. Pharmacokinetic parameters used for proposing PK/PD based limits of sensitivity and conditions favouring the prevention of emergence of resistance for most common organisms and systemic infections, together with the breakpoints set by European and American ad-hoc organisations

Drug	Typical daily dosageª	Typical PK values		Proposed PK/PD upper limit		Breakpoints (mg/L) ^d	
		C _{max} in mg/L total/free (dose)	$\begin{array}{l} AUC_{24 \ h} \\ (mg \times h/L) \\ total/free \end{array}$	Efficacy ^b	Prevention of resistance ^c	EUCAST (S/R)	NCCLS (S/I/R)
Norfloxacin	800 mg	1.4/1.1 (400 mg PO)	14/11	0.1–0.4	0.1	≤0.5/>1 ^e	≤4/8/>16 ^j
Ciprofloxacin	1000 mg	(400 mg PO) 2.5/1.75 (500 mg PO)	24/18	0.2–0.8	0.2	≤0.5/>1 ^f (<0.125/>2) ^g	$\leq 1/2/>4^k$
Ofloxacin	400 mg	4/3 (400 mg PO)	40/30	0.3–0.9	0.4	$\leq 0.5/>1^{\rm f}$ $(\leq 0.125/>4)^{\rm g}$	$\leq 2/4/8^l$
Levofloxacin	500 mg	4/2.8 (500 mg PO)	40/28	0.3–0.9	0.3	$\leq 1/>2^{\rm f}$ $(\leq 2/>2)^{\rm h}$	$\leq 2/4/8^l$
Moxifloxacin	400 mg	3.1/1.8 (400 mg PO)	35/21	0.2–0.7	0.2	$\leq 0.5/>1)^{\rm e}$ $(\leq 0.5/>0.5)^{\rm i}$	$\leq 1/2/4^m$

EUCAST, European Committee on Antimicrobial Susceptibility Testing (http://www.eucast.org) [241].

NCCLS, National Committee for Clinical Laboratory Standards (Clinical and Laboratory Standards Institute) (http://www.nccls.org).

"Based on a minimal Cmax/MIC ratio of 10, considered to encompass the 'mutant prevention concentration' of most susceptible isolates (see text for discussion). Application of this criterion will also meet the requirement for larger AUC24 h/MIC ratios than needed for efficacy.

^dFor organisms within the main indications.

"Enterobacteriaceae only (Pseudomonas is considered to be non-susceptible).

For most Gram-negative organisms, including Pseudomonas; 1 for Staph. aureus with high-dose therapy.

⁸Values in parentheses refer to Streptococcus pneumoniae, where the wild-type population is not considered susceptible to ciprofloxacin or ofloxacin, and is therefore categorised globally as 'intermediate'. ^hFor *Strep. pneumoniae* and levofloxacin, the breakpoint was increased to 2 to avoid dividing the wild-type population (see [242] for a typical example from France), but this

breakpoint relates to high dose therapy

ⁱFor Strep. pneumoniae, Haemophilus influenzae and Moraxella catarrhalis.

^jEnterobacteriaceae and P. aeruginosa.

*Staphylococcus aureus, Enterobacteriaceae and P. aeruginosa. ¹Strep. pneumoniae, Staph. aureus, Enterobacteriaceae and P. aeruginosa.

^mStrep. pneumoniae.

REFERENCES

1. Yucesoy M, Oztek OA, Marol S. Comparison of three differential media for the presumptive identification of yeasts. Clin Microbiol Infect 2005; 11: 245-247.

2. Van Bambeke F, Michot J-M, Van Eldere J., Tulkens P.M. Quinolones in 2005: an update. Clin Microbiol Infect 2005; 11: 256–280.

S, susceptible; I, intermediately resistant; R, resistant.

^aIn patients with no gross abnormality of the excretory functions, and for most common tissue-based infections (thus excluding simple cystitis); based on recent typical Summary of Product Characteristics' (SPC, or Tabelling' in Europe). Recent guidelines, and SPC in some countries, suggest higher dosages for ciprofloxacin (up to 1200 mg/day), ofloxacin (up to 800 mg/day), and levofloxacin (750–1000 mg/day). Because the pharmacokinetics of registered quinolones are linear with respect to doses (within the limits of the agents registered), adaptation of the figures of Cmax and AUC24 h for doses other than those shown here can be done by simple extra- or intrapolation. ^bBased on a free AUC_{24 b}/MIC ratio ranging from 30 (pneumococcocal infection/immunocompetent host) to 100 (Gram-negative infection/immunoimpaired host); see discussion in text in support of these values as average means for free concentrations.