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Intracellular Staphylococcus aureus persisters
upon antibiotic exposure
Frédéric Peyrusson1, Hugo Varet 2, Tiep Khac Nguyen1, Rachel Legendre 2, Odile Sismeiro3,

Jean-Yves Coppée3, Christiane Wolz 4, Tanel Tenson5 & Françoise Van Bambeke 1✉

Bacterial persister cells are phenotypic variants that exhibit a transient non-growing state and

antibiotic tolerance. Here, we provide in vitro evidence of Staphylococcus aureus persisters

within infected host cells. We show that the bacteria surviving antibiotic treatment within

host cells are persisters, displaying biphasic killing and reaching a uniformly non-responsive,

non-dividing state when followed at the single-cell level. This phenotype is stable but

reversible upon antibiotic removal. Intracellular S. aureus persisters remain metabolically

active but display an altered transcriptomic profile consistent with activation of stress

responses, including the stringent response as well as cell wall stress, SOS and heat shock

responses. These changes are associated with multidrug tolerance after exposure to a single

antibiotic. We hypothesize that intracellular S. aureus persisters may constitute a reservoir for

relapsing infection and could contribute to therapeutic failures.
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Persisters are subpopulations of cells in bacterial cultures that
adopt a transient phenotype characterized by a non-
growing state and a tolerance to lethal concentrations of

antibiotics1. As opposed to resistance, persistence is not geneti-
cally inherited. Experimentally, persisters are usually evidenced
by biphasic kill curves, when a bulk of susceptible bacteria is
rapidly killed by exposure to high antibiotic concentrations, while
a small proportion survives for longer time2,3. Recent advances in
single-cell analyses have allowed characterizing persisters in more
details, and notably revealed their non-growing state. There is
now convincing and convergent experimental evidence of their
clinical relevance, as they contribute to the establishment of
chronic infections as well as to the emergence of antibiotic
resistance4.

The switch to persister phenotype has been largely related to
the activation of the stringent response, a global and widely dis-
tributed adaptation program that occurs in response to various
stresses and modulates many physiological activities. However, its
exact role in persistence regulation is still debated5,6. Additionally,
tolerance is often considered as a passive consequence of growth
arrest7, which is now challenged by mounting evidence of active
responses in some species8. Similarly, whether or not dormancy is
sufficient to explain antibiotic tolerance is also questioned9.

Although persister cells have been identified in all major
pathogens10–13, a switch to a persister phenotype has been pro-
posed to occur inside eukaryotic cells for only very few intra-
cellular bacteria14,15 in response to the environmental stress
imposed by the host cell.

Intracellular survival of Staphylococcus aureus is widely
recognized as a major factor in the recurrence of infections16 and
intracellular forms of S. aureus have been shown to become less
responsive to antibiotic action17, suggesting a switch to a persister
phenotype.

In the present work, we provide evidence for the presence of S.
aureus intracellular persisters after antibiotic exposure and
characterize their dynamics using a fluorescence dilution-based
method to monitor bacterial division at the single cell level. We
show that intracellular bacterial populations are characterized by
a biphasic killing, accompanied by a rapid switch to a uniformly
non-dividing and non-responsive state, which is readily reversible
upon antibiotic removal. As a potential issue in therapeutic fail-
ures, we then aim to better understand the factors leading to
antibiotic persistence and tolerance. Using RNA-sequencing we
show that these persisters harbor a major transcriptomic repro-
gramming and remain metabolically active despite prolonged
persistence within the host cells. While neither ATP nor amino
acid limitation occur, we find that bacteria adjust their central
carbon metabolism and redirect transcription to the benefit of a
network of adaptive responses. Strikingly, after exposure to a
single antibiotic, these responses lead to tolerance to multiple
antibiotic classes that act on unrelated targets.

Results
S. aureus surviving to antibiotics in cells are persisters.
Concentration-response curves of typical antistaphylococcal
antibiotics targeting the cell wall (oxacillin), protein synthesis
(clarithromycin), and replication (moxifloxacin), revealed their
inability to clear bacteria from J774 macrophages: after 24 h of
infection with high antibiotic concentrations, an antibiotic-
tolerant pool of cultivable S. aureus persisted inside the macro-
phages (Fig. 1a). In parallel, time-kill curves performed in the
presence of high concentration of each of these antibiotics
revealed a biphasic killing: a bulk of the bacterial population was
susceptible and rapidly killed while a subpopulation with a slower
killing rate was persisting for a much longer period of time. A

similar profile was observed against planktonic cultures, but the
persisting subpopulation was considerably lower than intra-
cellularly (Fig. 1b). This profile is considered as a hallmark of
antibiotic persistence2,3.

Persisters are subpopulations that transiently adopt a non-
growing and a tolerant state. To confirm these observations and
further characterize this phenotype, we first set out to provide
evidence for non-growing phenotype of intracellular S. aureus by
setting up a fluorescence dilution-based method to monitor
bacterial division at the single cell level18. We used S. aureus
SH1000 expressing GFP from a tetracycline-inducible promotor,
which allows one to follow cell division by monitoring the
decrease in GFP signal intensity per cell after removal of the
inducer. To validate this approach, bacteria in broth were induced
overnight for GFP production, washed from inducer, and diluted
to entry into exponential phase, after which their fluorescence
signals were analyzed by flow cytometry (Fig. 1c). A homo-
geneous replication within the bacterial population was observed
with unimodal distribution of the signal gradually declining over
time, as confirmed in microscopy (Fig. 1d). When comparing the
fluorescence dilution with the cfu counting, both methods
revealed similar growth curves for 5 generations and similar
doubling times (Fig. 1e), validating fluorescence dilution for
measurement of bacterial replication19.

The same method was applied to characterize the dynamics of
intracellular S. aureus replication. Macrophages infected by GFP-
expressing inoculum revealed bacteria with apparent normal
morphology and distinct fluorescence status depending on the
antibiotic pressure (Fig. 1f).

This was examined by analyzing the flow cytometry profiles of
the replication of intraphagocytic bacteria challenged with
different antibiotic concentrations during 48 h of infection
(Fig. 1g). Exposure to low antibiotic pressure resulted in an
equilibrium between killing and replication. Among the bulk of
growing bacteria, a subpopulation rapidly entered into a non-
growing state (Supplementary Fig. 1a, b). High antibiotic pressure
resulted in both killing of replicating bacteria and larger amounts
of non-growing bacteria, leaving a homogenous population of
non-growing persisters until the end of the experiment.

Persisters revert to a normal phenotype once antibiotic
pressure is removed. We therefore determined the reversibility
of the phenotype after antibiotic removal. To this effect, we tested
growth resumption and susceptibility towards antibiotics within a
non-replicating population collected by cell sorting from infected
macrophages after reinoculation in broth (Fig. 1h). A full
reversion of the phenotype was observed, in terms of both
resulting growth at 24 h and antibiotic susceptibility. Addition-
ally, a biphasic killing profile was also observed for bacteria
harvested from macrophages (Fig. 1i). This transient bidirectional
switch demonstrates that these intracellular non-dividing sub-
populations are persisters. Reversion was also confirmed
intracellularly, where persisters started dividing spontaneously
within the cell after removal of the antibiotic pressure (Fig. 1j and
Supplementary Fig. 1c, d).

This intracellular persistence, together with the ability to
resume intracellular replication, are considered as two key
determinants for relapsing infections and likely contribute to
the clinical observation of rapid recolonization soon after the end
of therapy20. Intracellular replication is largely described in
nonprofessional phagocytes, while intracellular persistence has
been reported, although not systematically, in professional
phagocytes21, and referred to as cell induced-persistence22. Yet,
intrinsic cell defense mechanisms are critical to trigger either
persistence or replication. Illustrating this duality, we observed
active bacterial replication in untreated J774 macrophages but not
in primary human macrophages (Fig. 1k, l and Supplementary
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Fig. 1e, f), which can host a viable persister pool, albeit less
abundant than the one induced by antibiotic pressure in J774
macrophages.

Thus, we propose here a model in which antibiotic pressure
could represent a major trigger factor for intracellular persistence
in more permissive cell types. Similar experiments were
performed in a series of human cells (epithelial cells, monocytes,

osteoblasts, keratinocytes) and confirm the general character of
these observations (Supplementary Fig. 2). Because these
antibiotic-induced persisters readily reverse upon drug removal,
they could constitute a viable reservoir that acts as a major source
of dissemination and relapsing infections.

To better understand the factors underlying persistence, we
undertook an in-depth RNA-sequencing analysis of these
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intracellular persisters induced by prolonged antibiotic exposure
within eukaryotic cells, as a model for environmental stresses that
bacteria face in a clinical context.

Persisters exhibit an altered transcriptomic profile. Macro-
phages were infected by GFP-expressing bacteria and challenged
by oxacillin for 24 h to induce homogeneous populations of
persisters. Cell sorting was used to isolate the subset of GFP-
expressing bacteria (GFP+) that display a propidium iodide
negative signal (PI−) (Fig. 2a). The vast majority of GFP+/PI−
events were able to form colonies, confirming that they were
viable.

The transcriptomic profile of sorted persisters was assessed by
RNA-sequencing and reads of each sample were mapped on 2967
protein-coding genes from the reference genome23. Differential
expression analysis identified 1477 differentially expressed genes
(DEG) between the intracellular persisters and control bacteria
(Fig. 2b). Hierarchical clustering of this sample set revealed both
major divergences between these conditions and high within-
group reproducibility. Of the 1477 DEGs, 710 were upregulated
and 767 downregulated in persisters (Supplementary Fig. 3).

Over-representation analysis of DEGs revealed that the vast
majority of significantly enriched functions corresponds to
enrichments in downregulated genes (Fig. 2c). A large group of
those belongs to metabolism processes, indicating an overall
decrease in metabolic activities, some of them being typically
associated with proliferation processes (e.g., nucleotide metabo-
lism and oxidative phosphorylation). Of interest, proliferation-
related genes are described to be repressed to the benefit of genes
required for stress-defense mechanisms in persisters24. Down-
regulated gene-sets also unveil an important enrichment in
metabolism of amino acids (e.g., valine, leucine, isoleucine and
lysine biosynthesis), as well as in aminoacyl-tRNA synthetases.
Conversely, regarding enrichment in upregulated functions,
galactose metabolism was the most significantly enriched
function, which may point to deep metabolic network alterations.

Stringent response contributes to the persistence switch. The
persister phenotype has been largely related to the activation of
the stringent response (SR)25. In response to diverse stresses
(including starvation signals and antibiotics), SR is mediated by
the rapid synthesis of the alarmones (p)ppGpp, leading to deep
transcriptomic reprogramming, especially the repression of
proliferation-related genes and the activation of stress resistance-
and starvation survival-related genes and a halt of bacterial

division24. However, recent reports challenge its exact role as a
central regulator of persistence26,27.

In most firmicutes, (p)ppGpp is synthesized from the GDP/
GTP pool via three enzymes: the bifunctional enzyme Rsh that
possesses synthase and hydrolase domains, and RelP and RelQ,
which only have a synthase domain24. The molecular responses
initiated by (p)ppGpp seem to differ among species. In some
firmicutes, (p)ppGpp has been proposed to affect transcription
indirectly through a reduction in the intracellular pool of
nucleotides following (p)ppGpp synthesis28. Interestingly, the
expression of regulators differs depending on the nature of the
stress: while Rsh is mainly induced under amino acid limitation29,
RelP and RelQ have been shown to be mostly induced by cell
wall-targeting antimicrobials30. In S. aureus, CodY regulon is also
an integral part of SR: under amino acid starvation, silenced genes
are mainly downregulated through the inhibitory effect of (p)
ppGpp whereas the majority of activated genes are indirectly
regulated via de-repression of CodY. Yet, the implication of SR in
intracellular persistence has not yet been conclusively clarified.

Because SR is a highly dynamic process, we investigated the
expression of its regulatory network during infection. Quantita-
tive RT-PCR indicated a rapid and transitory boost of these
regulators soon after uptake of S. aureus by macrophages (Fig. 3a):
relQ reached its maximal transcription level 30 min after
phagocytosis, and relP, codY, and, to a lesser extent rsh, after 2
h. Limited expression of rsh is compatible with its pivotal role in
the SR: due to its dual hydrolase/synthase activity, Rsh finely
balances the basal levels of (p)ppGpp and prevents its toxic
accumulation31.

Conversely, at later time points, our transcriptomic approach
indicates that the vast majority (73%) of genes within the SR
stimulon display a divergent expression signature (repression or
non-statistically significant changes; Supplementary Fig. 4),
further supporting that the activation of SR is transitory.

To delineate the contribution of SR to the observed phenotype,
macrophages were infected with mutants defective in the rsh
synthase domain and/or codY (HG001 strain and isogenic
mutants; see Supplementary Table 1) and exposed to high
antibiotic pressure (Fig. 3b). Interestingly, with all antibiotics
tested, the load of persisters was lower in the rsh-negative
background than in the parental strain, the difference being less
marked with oxacillin. Double mutation in SR regulators led
to an additional decrease in the residual load of persisters
with oxacillin, and reached maximal effect upon moxifloxacin
exposure.

These results strongly suggest that SR is transiently implicated
during the initiation of intracellular persistence through (p)

Fig. 1 Evidence and dynamics of intracellular persisters of S. aureus. a Antibiotic activity against S. aureus infecting J774 macrophages exposed to
increasing concentrations of antibiotics for 24 h (data expressed as log10 cfu reduction from postphagocytosis inoculum). b Time-kill curves against S.
aureus infecting J774 macrophages (solid lines) or in exponential phase culture (dotted lines) exposed to 50x MIC of antibiotics for the indicated periods.
c Fluorescence dilution (FD) experiment with S. aureus expressing inducible GFP. Bacteria washed from inducer at the entry of exponential phase were
grown in fresh broth. The graph shows flow cytometric profiles of the frequency of events as a function of GFP intensity over time. d Corresponding images
in epifluorescence microscopy. e Corresponding bacterial replication curves determined by FD and OD620nm (OD), which displayed similar doubling times
(e.g., 27 min and 28.7 min between 1 h and 2 h, respectively; N [number of generations]). f Confocal microscopy of infected J774 macrophages exposed to
50x MIC moxifloxacin or under control conditions (2x MIC gentamicin) for 24 h. Arrows: bacteria with diluted signal (bar: 10 μm). g Flow cytometric
profiles of bacteria recovered from macrophages exposed to 2×(left) or 50x MIC (right) of each antibiotic for the indicated periods. h, i Activity of oxacillin
(h, concentration-effect at 24 h; i, time-kill curve with 50x MIC oxacillin) in broth, against an exponential phase culture (open symbols) or bacteria
recovered from macrophages exposed to 50x MIC oxacillin for 24 h (closed symbols). j Flow cytometric profiles of bacteria recovered from macrophages
exposed to 50x MIC oxacillin for 24 h (blue), then washed from oxacillin and reincubated in control conditions (2× MIC gentamicin) for an additional
period of 24 h (red). k Flow cytometric profiles of bacteria recovered from control (2x MIC gentamicin) J774 and human macrophages for the indicated
periods. l Intracellular inoculum in infected J774 and human macrophages incubated for 24 h with 50× MIC oxacillin or in control conditions (2×
MIC gentamicin). Statistical significance was determined by two-tailed Student’s t-test. Data are means ± SEM (a, b, h, i, l) or representatives results
(c, d, e, f, g, j, k) of three independent experiments. a, b, e, h, i, l, Source data are provided as a Source Data file.
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ppGpp regulations, in a variable manner depending on the drug
exposure. This supports the hypothesis that the central regulation
is not entirely dependent on SR and that multiple pathways
contribute to the persister phenotype.

Persisters display dysregulated but active protein synthesis.
Originally, persisters were described as being in a strictly dormant
state, in which SR shuts down energy-consuming processes by
turning translation off, thereby leading to antibiotic tolerance32.

In our study, the transcriptomic profile of translation-related
genes reveals a dysregulated pattern (Fig. 3c). Indeed, typical
members of the protein synthesis machinery were found

activated, and displayed a similar trend throughout the whole
duration of infection (Supplementary Fig. 5). In line with
enrichment analysis, aminoacyl-tRNA synthetase encoding genes
were, by contrast, deeply silenced, as is typically encountered
under stringent conditions. Additionally, the observed activation
of ribosome recycling factor (frr) has been described during
abortive initiation mechanism (peptidyl drop-off), leading to
ribosome reuse33.

This trend points to a deep reorientation in protein synthesis
rather than a general shutdown, and likely explains the dual
expression pattern observed here, in which a part of the translation
remains active while another seems to undergo a massive arrest.
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Fig. 2 Intracellular antibiotic-induced persisters exhibit a profoundly altered transcriptomic profile. a Experimental procedure for sorting and RNA-
sequencing of S. aureus persisters of SH1000. Cells infected by GFP-expressing bacteria were exposed to 50x MIC oxacillin to allow for the induction of a
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To check for the functionality of protein synthesis, we
measured the neo-synthesis of GFP as an indication of the
translation rate. Intracellular persisters selected by oxacillin
responded to induction by producing GFP, indicating that
persisters display reduced, but active translation (Fig. 3d). These
results led us to conclude that persisters are still metabolically
active and that inhibition of translation is not sufficient to explain
the antibiotic tolerance of intracellular S. aureus.

Persistence is not triggered by ATP or amino acid limitation.
Persistence has been extensively studied in nutrient-poor models,

mostly amino acid deprivation, in which bacteria tend to inhibit
protein synthesis and promote amino acid biosynthesis. In sta-
tionary planktonic cultures, where bacteria are usually observed
as dormant, ATP limitation has also been proposed to induce
persistence34. Recently, stimulation of production of reactive
oxygen species by macrophages has been shown to reduce ATP
levels and to increase antibiotic tolerance35.

We therefore measured ATP content in intracellular persisters
released from macrophages, and found no significant difference
from control samples (Fig. 4a), in line with a study showing
that ATP content is not decisive for persister formation in S.
aureus stationary cultures36. These data suggest that intracellular
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determined by one-way ANOVA with Dunnett’s post-test. Oxacillin [OXA], clarithromycin [CLR], moxifloxacin [MXF]. c MA-plot of genes related to
translation78. The graph displays the log2 Fold Change expression as a function of log2 Base Mean (mean expression signal across all samples). Typical
members of the function are pointed and aminoacyl-tRNA synthetases are shown in black. The dotted line indicates the basal expression level in control
samples. Statistical significance is based on adjusted P-value. d Rate of GFP synthesis in intracellular S. aureus. Macrophages were infected by non-induced
bacteria for 24 h, with (persisters) or without (control) 50× MIC oxacillin, and then induced for GFP expression for the indicated periods. Data are means ±
SEM of GFP signal from flow cytometric profiles from three independent experiments. a, b, d, Source data are provided as a Source Data file.
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persisters are metabolically active and have adapted their
metabolism for ATP maintenance.

The expression pattern of the central metabolic flux (Fig. 4b)
reveals metabolic network alterations: we found altered tran-
scripts levels for glycolysis-related enzymes and evidence of an
important carbon source shift between glucose and lactose,
described as a trigger factor for persistence37. This result is in
agreement with those of Traxler et al.38 who showed that E. coli
persisters could be formed through a glucose-lactose diauxie in

nutrient-rich conditions. Intracellular persisters also drastically
adapt their respiration status, with an expression program
resembling that observed in anaerobiosis. As revealed by
enrichment analysis, genes related to oxidative phosphorylation
(Supplementary Fig. 6) were mostly repressed39, to the benefit
of massive D-lactate fermentation. As the expression levels of
TCA cycle genes were rather maintained under these conditions,
they could contribute to the redox balance for sustained
fermentation.
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Fig. 4 Intracellular persister formation is not triggered by amino acid limitation nor ATP depletion. a Intrabacterial ATP concentration in intracellular
persisters (exposed to 50× MIC oxacillin for 24 h) and control samples (extracellular bacteria mixed with J774 cells lysate). Appropriate controls were
performed to ensure the absence of contamination by eukaryotic ATP. Data are means ± SEM of three independent experiments. Statistical significance
was determined by two-tailed Student’s t-test. ns non-statistically significant. b Schematic pathway of genes related to central carbon metabolism,
annotated according to KEGG orthology78 and Genbank database23 and their log2 Fold Change expression levels. c MA-plot of genes related to amino acid
metabolism within the stringent response stimulon (Supplementary Fig. 4; see reference55). The graph displays the log2 Fold Change expression as a
function of log2 Base Mean (mean expression signal across all samples). Genes prominently activated after amino acid depletion24 are pointed. The dotted
line indicates the basal expression level in control samples. Statistical significance is based on adjusted P-value. d Quantitative real-time PCR of transcripts
of genes related to amino acid synthesis in intracellular persisters exposed to 50x MIC oxacillin for the indicated periods. Data are means ± SEM of three
independent experiments. a, d Source data are provided as a Source Data file.
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The transcription signature of the genes related to amino acid
metabolism within the SR stimulon (Fig. 4c) revealed that the vast
majority were silent after 24 h, and also at earlier infection stages
(Fig. 4d), when the transcription of SR regulators is already taking
place. We conclude that amino acid limitation is not a trigger
factor for intracellular persistence. Because these persisters
sustain protein synthesis, we may suppose bacteria rely on other
resource pools available in host cell, thereby ruling out the
vacuolar nutrient-poor model40,41.

Although coherent with studies in Gram-negative pathogens42,
these conclusions are still under debate for S. aureus, for which
only amino acid limitation has been proposed as a trigger factor
for intracellular persistence24.

Redundant adaptive responses lead to multidrug tolerance. It
was previously hypothesized that a central growth arrest would
lead to the inactivation of antibiotic targets and to tolerance. Such
corrupted targets would prevent fluoroquinolones from generat-
ing DNA breaks, aminoglycosides from causing protein mis-
translation, or β-lactams from impairing peptidoglycan
reticulation42. Yet, our model denies pure dormancy of persisters
but rather argues for a switch, partly initiated by SR, to a state
where active processes ensure functional bacterial maintenance.

To better understand factors that underlie tolerance, we first
examined how persisters induced by one drug would reply to
another one. To this effect, intracellular persisters induced by
oxacillin for 24 h were then exposed to fluoroquinolones,
macrolides or aminoglycosides for an additional 24 h period in
the continuing presence of oxacillin (Fig. 5a). When combined
with oxacillin, all three antibiotics led to higher reductions in
persister counts than oxacillin during the entire duration of the
experiment and the kinetics of killing remained biphasic
(Supplementary Fig. 7). Strikingly, no additional decrease was
observed when the second drug was added after exposure to
oxacillin. This indicates that oxacillin was able to induce a
phenotype conferring a general tolerance to the four antibiotic
classes, irrespective of their mechanism of action.

This observation strongly suggests that persister and tolerant
phenotype occurs through multiple protective mechanisms
intracellularly.

The gene expression of peptidoglycan biosynthesis is signifi-
cantly reprogrammed within intracellular persisters (Fig. 5b),
matching with an activation of the cell wall stress stimulon
(CWSS), a protective response to cell wall defects and cell wall-
active antibiotics43. These changes include the induction of genes
within the core of the CWSS: the two-component system vraS/
vraR, and genes involved in the late steps of peptidoglycan
synthesis (i.e., pbp2, the transglycosylase sgtB, and fmtA encoding
a penicillin binding protein with low affinity to β-lactams). CWSS
induction provides a certain level of tolerance to most VraS/R-
inducing agents43. Thus, intracellular persisters exhibit active
responses for cell wall maintenance that likely mediate the
observed tolerance to oxacillin.

Intracellular persisters also elicit an extensive program for
preserving genome integrity through the SOS response. This
network is a highly conserved DNA damage repair system which
has been shown to induce tolerance to fluoroquinolones44 and
confer protection against the bactericidal effects of β-lactams in E.
coli45. In this pathway, RecA both facilitates recombinational
repair and stimulates auto-cleavage of the repressor LexA,
resulting in de-repression of genes involved in DNA repair or
recombination46.

Within intracellular persisters, typical effectors of the SOS
network, such as the excision repair systems or mismatch and
repair systems, were largely transcribed (Fig. 5c, d) together with

genes encoding fluoroquinolone targets, which may cooperatively
contribute to the observed fluoroquinolone tolerance.

S. aureus persisters also undergo a massive transcription of
the heat shock stimulon (Fig. 5e), a central response in stress
tolerance. Under our conditions, dnaK, groESL, and grpE
transcripts belong to the 98th percentile of the fold change
distribution in the transcriptome, thus indicating a drastic
activation of this response. The DnaK and GroESL chaperone/
chaperonin sequentially function as a crucial bacterial protein
folding machinery and participate in the degradation of defective
proteins47. In the context of multiple stresses and dysregulated
translation, its implication in bacterial tolerance is wide.
By dealing with damaged proteins, this system is known to
participate in tolerance to both β-lactams48 and aminoglyco-
sides49 and possibly influences the action of macrolides50.
Macrolides target protein synthesis and cause early peptidyl-
tRNA drop-off51. Although the mechanisms of macrolide
tolerance are largely unknown, a role of this stimulon is
conceivable since GroESL has been shown to positively affect the
peptidyl-tRNA processing by peptidyl-tRNA hydrolase (Pth)33.
Additionally, because the uptake of aminoglycosides requires
proton motive force52, the deeply impaired transcription of the
electron transport chain may favorably contribute to the
tolerance to aminoglycosides, together with the decrease in
translation rate, which has been proposed as a factor leading to
tolerance towards protein synthesis inhibitors53 (Supplementary
Table 2 for summary). Interestingly, this set of adaptive
responses redundantly occurs in all permissive host cells tested
(Supplementary Fig. 8).

To help clarify how this network of signaling pathways is
taking place, and especially their relationship with SR, we studied
the effect of rsh-codY mutation (HG001 strain and its isogenic
mutant) on key determinants of CWSS, SOS and heat shock
responses after 2 h of infection, i.e., a time point where SR was
active (Fig. 5f). We found that SR positively modulated the
expression pattern of SOS response, and, to a lesser extent, of
CWSS through VraS. Alternatively, the expression of relP/relQ
synthetases has been shown to be impacted by the VraS/R
system30. These mutations, nevertheless, did not annihilate the
expression of these genes, and had no effect on heat shock
chaperones, leading us to conclude that the SOS response and
CWSS are positively modulated but not dependent on SR.

These findings are consistent with overlaps observed in
transcription signatures between SR and CWSS or SOS stimulons.
Indeed, relP has also been described as a core member of CWSS54

and conversely, fmtA and sgtB, as members of SR stimulon,
corroborating the entanglements in these responses. Similarly,
lexA regulator belongs to SR stimulon55.

Additionally, in the absence of antibiotic pressure, intracellular
bacteria displayed similar inductions of most of the determinants
of SOS and heat shock responses, and a basal induction of CWSS,
which becomes markedly induced upon antibiotic exposure
(Supplementary Fig. 9), suggesting that stresses imposed by the
intracellular environment also contribute to the changes observed
in these signaling networks.

Discussion
This work clearly demonstrates the presence of intracellular
persisters of S. aureus during antibiotic exposure, especially by
monitoring bacterial division at a single cell level. We show that
antibiotic pressure allows for the induction of homogenous living
and non-dividing populations of persisters and that this pheno-
type is stable but highly reversible upon drug removal. Our model
thus indicates a very dynamic bidirectional switch to intracellular
persistence. The intracellular environment, by allowing both
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persistence and replication, could then represent both a privileged
reservoir for the pathogen and a major source of relapses after
antibiotic removal.

Our RNA-sequencing analysis offers a comprehensive overview
of the transcriptomic profile of the living population of S. aureus
persisters. The transcriptomic patterns highlighted in this study

led us to propose a model of factors leading to persistence and
tolerance (Fig. 6).

A transitory boost of SR contributes to initiate the switch to
intracellular persistence in response to a complex set of envir-
onmental stresses. Interestingly, no ATP or amino acid limita-
tions occur intracellularly. Noteworthy, neither oxacillin in
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Fig. 5 A mosaic of redundant adaptive responses leads to multidrug tolerance. a Activity of antibiotic combinations added simultaneously or in
succession against intracellular persisters. Intracellular persisters were challenged to 50× MIC of antibiotics alone or in combination, and recovered from
macrophages and proceeded for cfu counting after 48 h, following the experimental procedure described above. For combinations, antibiotics were added
either at the same time as oxacillin or 24 h after oxacillin. Data (expressed as cfu reduction from the original inoculum) are means ± SEM of three
independent experiments. Statistical significance was determined by one-way ANOVA with Dunnett’s post-test. Oxacillin [OXA], moxifloxacin [MXF],
clarithromycin [CLR], gentamicin [GEN]. b, c MA-plots of genes related to peptidoglycan biosynthesis78 (extended to vraS/R and cell-envelope biogenesis
genes from the cell wall stress stimulon)80 and SOS response stimulon46,55, respectively. The graphs display the log2 Fold Change expression as a function
of log2 Base Mean (mean expression signal across all samples). Typical members of the stimulons are pointed. The dotted lines indicate the basal
expression level in control samples. Statistical significance is based on adjusted P-value. d Number of up- or downregulated DEGs related to DNA repair78.
e MA-plot of genes related to heat shock stimulon55. f Quantitative real-time PCR of transcripts of determinants of CWSS, SOS response, and heat shock
stimulon, from left to right, in HG001 (WT) or HG001 rsh-codY double mutants (Δrsh-ΔcodY) exposed to 50× MIC oxacillin for 2 h of infection. Data are
means ± SEM of three independent experiments. Statistical significance was determined by two-tailed Student’s t-test. a, f Source data are provided as a
Source Data file.
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planktonic cultures nor permissive cells alone could trigger
marked S. aureus persistence under our conditions, thus indi-
cating that stresses of different nature can collectively initiate
persistence when reaching a certain threshold. During infection,
bacteria are typically internalized in vacuolar compartments and
experience numerous stresses from the host cell and antibiotic
pressure. Besides the direct effect of the antibiotic, these stresses
include a carbon source transition and a contribution of acidic
pH14, which may work in concert with cell- and antibiotic-
induced oxidative stresses35,56.

SR redirects many physiological activities at the expense of
those required for growth and proliferation through transcrip-
tional regulation circuits and post-translational modifications that
represent a second control point “freezing” the system, conferring
extreme plasticity towards external stresses.

We did not find evidence of expression of SR regulators for
prolonged periods. Our data rather supports the hypothesis that
the mechanism of persistence is not solely dependent on SR but

that multiple pathways contribute to persister generation and
maintenance. The redundant character of this signaling network
might thus result from the continuous and multiple stresses
bacteria are facing, rather than a unique regulator.

Our work also questions the concept of tolerance occurring as a
passive phenomenon through target inactivity. We showed that
intracellular persisters are metabolically active cells, which exhibit
a mosaic of adaptive responses that lead to a phenotype of
multiple tolerance. These responses seem to redundantly occur,
and involve the activation of the CWSS, the SOS and heat shock
responses, as well as the induction of several antibiotic targets.
This study also demonstrates that exposure to a single drug can
trigger a phenotype of multiple tolerance to several antibiotic
classes intracellularly. The clinical meaning of these observations
remains to be established.

Our model for persistence integrates apparent contradictory
observations (e.g., dormancy status or levels of tolerance) often
interpreted as physiological diversity57,58 (Supplementary Fig. 10).
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We propose that persistence is highly plastic through essentially
redundant regulations, which differentially adapt levels of dor-
mancy as a function of sensed level of stress. In that sense, the
proposed heterogeneity should essentially result from differences
of degree rather than of nature.

Once intracellular persistence is established, we hypothesize
this could constitute a state at the crossroads, either reverting to
replicative forms if the level of stress is released, or promoting the
evolution to resistant forms if the pressure is maintained59. In the
latter case, our data indicate that this evolution could be pro-
moted mainly at two distinct levels, through potentiation of
higher mutation rates60 and extensive horizontal gene transfer61,
as a consequence of drastic activations of low-fidelity polymerases
and competence genes, respectively (Supplementary Fig. 11 and
Supplementary Table 3 for summary).

Thus, the present work demonstrates that bacteria surviving to
antibiotics intracellularly are persisters which harbor a pro-
foundly reshaped transcriptome. They activate a series of stress
responses for long-term survival. Our results therefore highlight
persistence as a potential critical trigger for therapeutic failures.

Methods
Bacterial strains and cells. Strains used in this study are listed in Supplementary
Table 1. S. aureus strains were routinely grown at 37 °C in cation-adjusted Mueller-
Hinton broth (MHB-CA; Sigma) under shaking at 300 rpm. The fully susceptible
strain SH1000 (ref. 62) was used to harbor the pALC2084 plasmid, which encodes a
reporter gfp gene cloned downstream of a xyl/tetO promoter and allows a dose-
dependent tetracycline induction in vivo and in vitro63. GFP production was
induced by a sub-inhibitory concentration (125 ng mL−1) of tetracycline. Over-
night cultures were supplemented with 10 mg L−1 chloramphenicol. All experi-
ments were performed on SH1000, unless stated otherwise.

Murine J774A.1 macrophages64 (Sandoz Forschung Laboratories) were cultured
in RPMI 1640 medium (Thermo Fisher Scientific) supplemented with 10% fetal
bovine serum (FBS; Thermo Fisher Scientific) at 37 °C in a 5% CO2 atmosphere.
When indicated, cells were washed in sterile PBS (filtered on 0.22 µm pore size
membrane when used for flow cytometry analysis). Cells were seeded in 12-well
plates (Greiner bio-one), in Labtek 2-well Chamber Slide (Nunc) for confocal
microscopy, or in 145 mm cell culture dishes (Greiner bio-one) for cell sorting.

Human macrophages were obtained by isolation and differentiation of
monocytes from peripheral blood according to the protocol from Menck et al.65.
Briefly, buffy coats from healthy blood donors were subjected to a double Ficoll and
Percoll density gradient centrifugation for isolation of monocytes from peripheral
blood. For differentiation to macrophages, monocytes were resuspended in RPMI
1640 with 2% human serum (Biowest), 1% penicillin/streptomycin (Thermo Fisher
Scientific) and 2.5 ng mL−1 M-CSF (Miltenyl Biotec) and seeded in 12-well plates
for 7 days at 37 °C in a 5% CO2 atmosphere. Cells were then collected and seeded
in 12-well plates in RPMI 1640 with 10% FBS for infection. Human THP-1
monocytes (ATCC TIB-202) were cultured in RPMI 1640 medium with 10% FBS
as previously described66. Human MG63 osteoblastic cells (LGC Standards) were
cultured in Dulbecco’s modified Eagle’s medium (DMEM) with 10% FBS67.
Human A549 (ATCC CCL-185) and MCF7 (ATCC HTB-22) epithelial cells were
cultured in DMEM with 10% FBS and DMEM with 10% FBS and 0.01 mgmL−1

insulin (Gibco). Human adult primary keratinocytes were cultured in
supplemented EpiLife medium (EpiLife with S7; Thermo Fisher Scientific) in
collagen coated plates as previously described68.

Experiments in broth. For Fluorescence dilution experiments, overnight S. aureus
cultures in MHB-CA supplemented with 125 ng mL−1 tetracycline were cen-
trifuged at 5000 g for 5 min, washed out in PBS to remove tetracycline, and diluted
in fresh medium to reach a starting OD620 nm of 0.05. Cultures were incubated at
37 °C and aliquots were collected over time, centrifuged, washed in PBS, resus-
pended in filtered PBS and analyzed by flow cytometry or epifluorescence
microscopy (Carl Zeiss Axioskop 40) as described below (see also Supplementary
Fig. 12 for gating methods). For time-kill curves, S. aureus was grown overnight in
MHB-CA, diluted in fresh medium to reach a starting OD620 nm of 0.05 and grown
to the mid-exponential phase. Cultures were diluted to a starting inoculum of 1 ×
106 cfu mL−1 and exposed to oxacillin (Sigma), clarithromycin (SMB-Galephar), or
moxifloxacin (Sigma) at 50× their respective MIC, for the indicated times. For cfu
counting, samples were diluted in PBS before plating on Tryptic Soy agar. Data are
expressed as log10 cfu mL−1 after the incubation period compared to the starting
inoculum.

Infection of macrophages and other cell types. Infection was performed fol-
lowing a protocol adapted from Seral et al.69 and Barcia-Macay et al.66. S. aureus
was grown overnight in MHB-CA supplemented with 125 ng mL−1 tetracycline.

Bacteria were then centrifuged at 5000 g for 5 min and resuspended in RPMI
1640 supplemented with 125 ng mL−1 tetracycline and 10% human serum to allow
opsonization for 30 min at 37 °C. Bacteria were centrifuged, resuspended in fresh
RPMI 1640 with 10% FBS and 125 ng mL−1 tetracycline, and incubated with cells
during 30 min at 37 °C at a multiplicity of infection of 10:1 to allow phagocytosis.
The multiplicity of infection (MOI) was adapted to 100:1 for RNA-seq in order to
obtain a sufficient amount of bacterial material (see Supplementary Fig. 13 for
evaluation of the absence of effect of MOI on the dynamics of replication) and 1:1
for confocal microscopy. Cells were then washed with PBS, and non-phagocytized
bacteria were eliminated by a 40 min incubation at 37 °C in RPMI 1640 supple-
mented with 50 mg L−1 gentamicin (Sigma). Gentamicin was eliminated by
washing in PBS, after which cells were reincubated at 37 °C in RPMI 1640 with 10%
FBS in the presence either of 2× MIC of gentamicin (to prevent extracellular
growth; control conditions)69, or of oxacillin, clarithromycin, or moxifloxacin at 2
or 50× their respective MIC, for the indicated times. Cells were then washed with
PBS, scrapped and lysed with PBS containing 0.1% (w/v) Triton X-100 (Sigma) to
release intracellular bacteria. Lysates were centrifuged at 300 g for 5 min to discard
cellular debris. Bacteria were collected by centrifugation at 5000 g for 5 min, washed
in PBS, and resuspended in filtered PBS. For cfu counting, samples were diluted in
PBS before plating on Tryptic Soy agar. Data are expressed as log10 cfu per mg cell
protein after the incubation period compared to the post-phagocytosis inoculum.
The same protocol was applied for infection of primary human macrophages and
THP-1 monocytes, except that THP-1 cells were growing in suspension, so that
washing procedures involved cell pelleting by centrifugation (7 min, 300 g). For
other cell types (A549, MCF7, MG63 and primary keratinocytes), the same pro-
tocol was applied as for macrophages, except that bacteria were incubated with cells
during 2 h at a multiplicity of infection of 50:1. This allowed to reach typical
inocula of 2 × 106 bacteria mg−1 of cell protein for macrophages and monocytes,
0.4 × 106 bacteria per mg of cell protein for A549, MCF7 and MG63, and 0.2 × 106

bacteria per mg of cell protein for keratinocytes. All experiments were performed
on SH1000 induced for GFP expression, with the exception of experiments on the
rate of GFP synthesis (see hereafter).

Rate of GFP synthesis in intracellular persisters. Macrophages were infected
by non-induced bacteria following the same procedure and incubated with or
without 50× MIC oxacillin for 24 h, after which induction were performed with
125 ngmL−1 tetracycline for the indicated periods.

Confocal microscopy. Infected macrophages seeded in Labtek chambers were
incubated with gentamicin or moxifloxacin in RPMI 1640 without phenol red.
Prior to microscopy, chambers were removed and slides covered with cover glasses.
Infected cells were observed with a Cell Observer SD (Carl Zeiss) and analyzed with
Zen v1.1.2.0 software (Carl Zeiss).

Flow cytometry. S. aureus isolated from broth cultures or from macrophages were
resuspended in filtered PBS, stained with 10 µg mL−1 propidium iodide, and
analyzed using a FACSVerse cytometer (BD Biosciences) for GFP signal intensities
(FITC channel, medium flow rate). Forward-scatter width (FCS-W) versus
forward-scatter area (FSC-A), and side-scatter width (SSC-W) versus side-scatter
area (SSC-A) were used to gate out damaged or multiplet cells. Of those, propidium
iodide-positive bacteria were gated out. Data were analyzed with FlowJo
10.5.2 software (TreeStar Inc.). The level of replication of the population (F, fold
replication) is calculated by the ratio Me0/Met with Me being the median GFP
intensity of the bacterial population at a given time. The number of generations, N,
is deduced from F= 2N (ref. 19).

Samples preparation for RNA-seq. For differential expression analysis, bacterial
reference samples (hereafter named “control samples” in RNA-seq experiments)
were collected from an overnight culture (MHB-CA supplemented with
125 ng mL−1 tetracycline) by centrifugation at 5000 g for 5 min, resuspended in
RPMI 1640 and incubated for 30 min at 37 °C. This bacterial suspension was then
mixed with a cell lysate obtained from non-infected macrophages incubated
in RPMI 1640 with 10% FBS for 24 h, in order to mimic the matrix effect of
macrophages in the persister condition. The relative amount of bacteria and cells
was adjusted to that obtained in 24 h-infected cells. Intracellular persisters were
collected from macrophages as described for flow cytometry. Both control and
persisters conditions were proceeded for the same sorting procedure. Bacteria
were immediately proceeded for sorting on the basis of their propidium iodide
profile and GFP expression level using the gating methods described above, in a
FACSAria III cytometer operated by the BD FACSDiva 8.0.1 software (BD
Biosciences), under continuous cooling to 4 °C (including the input tube holder
and the collection tube) at high flow rate. Samples were then immediately pro-
cessed for RNA extraction.

RNA extraction. S. aureus recovered from infected macrophages or from control
samples were centrifuged at 5000 g for 5 min and lysed using the following pro-
cedure: pellets were resuspended in Tris-EDTA buffer containing freshly prepared
13 mgmL−1 lysozyme (Sigma) and 130 µg mL−1 lysostaphin (Sigma) for 30 min at
room temperature. Resulting suspensions were processed for total RNA extraction
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with RNA extraction InviTrap Spin Universal RNA Mini Kit (Stratec) following the
manufacturer’s instructions. Traces of contaminating genomic DNA were removed
from samples by treatment with TURBO DNase (Ambion) for 30 min at 37 °C
according to the manufacturer’s instructions. RNA purity was checked using a
NanoDrop spectrophotometer (Thermo Fisher Scientific).

RNA sequencing. Total RNA from three independent replicates were checked on
the Bioanalyser system (Agilent) for its quality and integrity. Ribosomal RNA
depletion was performed using the Bacteria RiboZero kit (Illumina). From rRNA-
depleted RNA, directional libraries were prepared using the TruSeq Stranded
mRNA Sample preparation kit following the manufacturer’s instructions (Illu-
mina). Libraries were checked for quality on Bioanalyser DNA chips Bioanalyser
(Agilent). Quantification was performed with the fluorescent-based quantitation
Qubit dsDNA HS Assay Kit (Thermo Fisher Scientific). Sequencing was performed
as an SRM run (SR: Single Read, PE: Paired-end Reads, M: multiplexed samples)
for 65 bp sequences on HiSeq 2500 Illumina sequencer (65 cycles). The multi-
plexing level was 6 samples per lane. Bioinformatics analysis were performed using
the RNA-seq pipeline from Sequana70. Reads were cleaned of adapter sequences
and low-quality sequences using cutadapt version 1.11 (ref. 71). Only sequences at
least 25 nt length were considered for further analysis. Bowtie version 0.12.7
(ref. 72) with default parameters, was used for alignment on the reference genome
(CP000253.1, NCBI). Genes were counted using featureCounts version 1.4.6-p3
(ref. 73) from Subreads package (parameters: -t gene -g ID -s 1). Count data were
analyzed using R version 3.4.1 (ref. 74) and the Bioconductor package DESeq2
version 1.16 (ref. 75). The normalization and dispersion estimation were performed
with DESeq2 using the default parameters and statistical tests for differential
expression were performed applying the independent filtering algorithm. A gen-
eralized linear model was set in order to test for the differential expression between
the intracellular persisters and control conditions. Raw P values were adjusted for
multiple testing according to the Benjamini and Hochberg (BH) procedure76 and
genes with an adjusted p value lower than 0.05 were considered differentially
expressed. For over-representation analysis, S. aureus KEGG gene-sets were
downloaded thanks to the EnrichmentBrowser R package version 2.14.3 (organism
code sao). All the 106 KEGG sets were then tested for the over-representation in
differentially expressed genes using the Fisher statistical test. Only gene-sets with a
FDR lower than 0.05 were considered significantly enriched.

Quantitative real-time PCR. Total bacterial RNA from infected macrophages or
from control samples at different time points was isolated as described for RNA-
seq analyses. RNA was reverse transcribed using transcription first strand cDNA
synthesis kit (Roche Applied Science) according to the manufacturer’s instructions.
Amplification reactions were performed with Sybr green IQ Supermix (Bio-Rad
Laboratories) using an iCycler iQ single-color real-time PCR detection system (Bio-
Rad Laboratories). Fold changes in expression versus control condition were
determined using the 2(−ΔΔCt) method77 with gmk as a housekeeping gene. Primers
sequences are listed in Supplementary Table 4.

ATP measurements. Bacteria were released from macrophages as described above,
washed in 50 mM Tris-HCl, centrifuged at 5000 g for 5 min and processed for lysis
following the same procedure as for RNA extraction. Control samples (as described
for RNA-seq experiments) were used for comparison purposes. Bacterial lysates
were incubated 2 min at 100 °C, centrifuged at 9600 g for 2 min and assayed for
ATP measurements, using the ATP determination kit (Thermo Fisher Scientific)
according to the manufacturer’s instructions. Bioluminescence was measured using
a SpectraMax M3 548 Microplate Reader (Molecular Devices).

Ethics statement. Experiments on blood material were performed in strict
accordance with governmental and European legislation relative to blood, cell and
tissues-related activities, and were approved by the ethical committee Comité
d’Ethique Hospitalo-Facultaire Saint-Luc (CEHF Saint-Luc; permit no.
B403201730810). Human blood was collected in Croix-Rouge de Belgique centers,
from healthy volunteers who gave written informed consent, in accordance with
procedures of Service Francophone du Sang de la Croix–Rouge de Belgique.

Statistical analysis and curve fitting. For RNA-seq analyses, differential
expressions of transcripts were based on adjusted P-values with a threshold of
statistical significance set to 0.05. Genes descriptions were indicated as described in
GenBank database23 and classified according to KEGG orthology78 and KEGG
pathway79 databases (organism code CP000253.1 and sao respectively). Curve
fitting and statistical analyses were performed with GraphPad Prism versions 4.03
or 8.3.1, GraphPad InStat v3.10 (GraphPad Software), and JMP Pro version 13.1.0.
Statistical differences were determined using unpaired two-tailed Student’s t-tests
or one-way ANOVA with Dunnett’s post-tests for multiple comparisons. P-values
strictly inferior to 0.05 were used to show statistical significance and are indicated
in Figures. Non-statistically significant differences are indicated as “ns”.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 1a, b, e, h, i, l, 3a, b, d, 4a, d, 5a and f are provided as a
Source Data file. RNA-seq data reported in this study have been deposited at Gene
Expression Omnibus under accession number GSE139659 [https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE139659]. All other relevant data are available from the
corresponding author on request.
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Supplementary Figure 1. Quantification of non-growing events and cfu counts in macrophages. a, 
Number of non-growing events in flow cytometric profiles of bacteria recovered from J774 
macrophages exposed to 2 x or 50 x MIC of each antibiotic for 24 h (corresponding to experiments 
shown in Figure 1g), and b, corresponding cfus. For non-growing events, populations were gated so 
that over 90% of the induced initial inoculum was above the cutoff (corresponding to 2.103 of GFP 
fluorescence), and normalized to protein content. For cfus, data are expressed as log10 cfu reduction 
from the original inoculum. c, Number of non-growing events in flow cytometric profiles of bacteria 
recovered from J774 macrophages exposed to 50 x MIC oxacillin for 24 h, then washed from oxacillin 
and reincubated in the absence of antibiotic for an additional period of 24 h (corresponding to 
experiments shown in Figure 1j), and d, corresponding cfus. e, Number of non-growing events in flow 
cytometric profiles of bacteria recovered from untreated human macrophages for 24 h [2 x MIC 
gentamicin] (corresponding to experiments shown in Figure 1k), and f, corresponding cfus. a-f,Data 
are means ± SEM of three independent experiments. Oxacillin [OXA], clarithromycin [CLR], 
moxifloxacin [MXF]. 
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Supplementary Figure 2. Permissive cells as a model for intracellular persistence of S. aureus. a, Flow 
cytometric profiles of S. aureus recovered from human epithelial cells (A549 and MCF7), monocytes 
(THP-1), osteoblasts (MG63) and primary keratinocytes, exposed to 2 x (left) or 50 x MIC (right) of each 
antibiotic for the indicated periods (representatives results of three independent experiments). b, 
Time-kill curves of intracellular S. aureus in the same cell types. Infected cells were exposed to 50 x 
MIC of oxacillin, clarithromycin, or moxifloxacin for the indicated periods. Data (expressed as log10 cfu 
reduction from the original inoculum) are means ± SEM of three independent experiments. c, 
Intracellular S. aureus recovered from infected cells incubated for 24 h with or without 50 x MIC 
oxacillin (2 x MIC gentamicin). Data are means ± SEM of three independent experiments. Statistical 
significance between cells and human macrophages was determined by one-way ANOVA with 
Dunnett’s post-test. 
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Supplementary Figure 3. MA-plot of complete RNA-seq dataset. The graph displays the log2 Fold 
Change expression as a function of mean counts across all samples. Red dots represent significantly 
differentially expressed features, based on adjusted P value.  
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Supplementary Figure 4. MA-plot of genes related to the stringent response stimulon [1], extended 
to relP, relQ and codY. The graph displays the log2 Fold Change expression as a function of log2 Base 
Mean (mean expression signal across all samples). Typical members of the stimulon are pointed. The 
dotted lines indicate the basal expression level in control samples. Statistical significance is based on 
adjusted P value. 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 5. Quantitative real-time PCR of transcripts related to translation. 
Quantitative real-time PCR of transcripts related to translation in intracellular persisters exposed to 
50 x MIC oxacillin for the indicated times. Data, expressed in fold change vs control samples 
(extracellular bacteria mixed with J774 cells lysate), are means ± SEM of three independent 
experiments. Ribosomal proteins: rplA, 50S ribosomal protein L1; rplM, 50S ribosomal protein L13. 
Processing protein: rimL, 50S ribosomal protein L7 serine acetyltransferase. Translation factor: prfA, 
peptide chain release factor 1.  
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Supplementary Figure 6. KEGG Pathview representation of genes related to oxidative 
phosphorylation. Fold Changes expressions levels of up-, downregulated and non-statistically 
modified genes are shown in green, red and grey, respectively. 
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Supplementary Figure 7. Time-kill curves of intracellular S. aureus. Infected J774 macrophages were 
exposed to 50 x MIC of oxacillin, clarithromycin, or moxifloxacin alone or in combination for the 
indicated periods. Data (expressed as log10 cfu reduction from the original inoculum) are means ± SEM 
of three independent experiments. 
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Supplementary Figure 8. Quantitative real-time PCR of transcripts related to amino acid metabolism 
(a), Cell Wall Stress Stimulon (b), SOS response (c), heat shock stimulon (d), stringent response (e), 
translation process (f) and energy metabolism (g), in intracellular persisters recovered from infected 
cells, exposed to 50 x MIC oxacillin for 24h. Data, expressed in fold change vs control samples 
(extracellular bacteria mixed with cells lysates), are means ± SEM of three independent experiments.  
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Supplementary Figure 9. Quantitative real-time PCR of transcripts related to Cell Wall Stress 
Stimulon, SOS response and heat shock stimulon, from left to right, in intracellular bacteria with (intra 
persister) or without (intra growing) 50 x MIC oxacillin, for 24h of infection. Data, expressed in fold 
change vs control samples (extracellular bacteria mixed with J774 cells lysate), are means ± SEM of 
three independent experiments. Statistical significance was determined by two-tailed Student’s t-test.  
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Supplementary Figure 10. Schematic view illustrating the plasticity of persistence. Persistence is 
regulated through essentially redundant but highly plastic systems, which adapt their magnitude as a 
function of the sensed level of stress. In this model, persistence can be thought as a continuum in 
which regulations mechanisms essentially differ in terms of magnitude, leading to different levels of 
dormancy or tolerance, generally considered as heterogeneity. This notably tends to reconcile 
different situations encountered in culture media and intracellularly. Various stress factors work in 
concert to initiate the switch to persistence when a “threshold” is reached. Stress could be then 
differentially sensed trough balanced responses, which determines the level of dormancy as well as 
tolerance. Under this limit, bacteria maintain metabolic homeostasis and growth. Once the threshold 
is reached, bacteria enter in persister state with only partial dormancy, growth inhibition and a 
sustained ATP charge (e.g. intracellular persisters, or persisters induced following a nutrient shift). In 
critically lowered nutrient sources, as encountered in starvation models of stationary phases, 
metabolic adaptation is not sufficient to cope with carbon sources deprivation or other stresses. 
Bacteria then reach a stasis phase, accompanied by a drop in ATP content. Similar observations are 
made for tolerance levels which are the reflect of the magnitude of stringent response [2] or other 
stress responses (e.g. cell wall stress stimulon [3]). 
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Supplementary Figure 11. MA-plot of genes related to quorum sensing [4]. The graph displays the 
log2 Fold Change expression as a function of log2 Base Mean (mean expression signal across all 
samples). Typical members of the function are pointed. The dotted lines indicate the basal expression 
level in control samples. Statistical significance is based on adjusted P value. 
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Supplementary Figure 12. Gating methods for fluorescence dilution analyses. Bacteria recovered 
from macrophages were analyzed by gating forward-scatter width (FCS-W) versus forward-scatter 
area (FSC-A), and side-scatter width (SSC-W) versus side-scatter area (SSC-A), to gate out damaged or 
multiplet cells. Propidium iodide-negative events were used for flow cytometric profiles of GFP 
intensity to measure bacterial replication. The same gating methods were used for all experiments (as 
shown or interpreted in Figure 1c, e, g, j, k; Supplementary Figure 1a, c, e and Supplementary Figure 
2a) and for sorting strategy (as presented in Figure 2a).  

 

 

 

 

 

 

 

 

Supplementary Figure 13. Effect of multiplicity of infection (MOI) on dynamics of intracellular 
persisters. S. aureus persisters from infected macrophages at different MOI, exposed for 24 h to 50 x 
MIC oxacillin were collected and analyzed for their replication status.  
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Supplementary Tables 

 

Supplementary Table 1. Strains used in this study and MICs of antibiotics. 

Strain   Description Reference 

SH1000 pALC2084 
  SH1000 (rsbU restored NCTC 8325 [5]) with gfp 

under tetracycline inducible promoter, CAMr 

(pALC2084 [6]) 
this study 

HG001   rsbU restored NCTC 8325 [7] 
HG001-86   HG001 rshSyn mutant (Δ942-950nt) [8] 
HG001-21   HG001 codY mutant [7] 
HG001-86-21   HG001 rshSyn (Δ942-950nt)/codY double mutant [8] 
 MIC (mg L-1) 
Strain oxacillin clarithromycin moxifloxacin gentamicin 

SH1000 pALC2084 0.5 0.5 0.03 0.5 
HG001 0.25 0.5 0.03 0.25 
HG001-86 0.25 0.5 0.03 0.25 
HG001-21 0.25 0.5 0.03 0.5 
HG001-86-21 0.25 0.5 0.03 0.5 

 

 

Supplementary Table 2. Overview of main stress responses and postulated consequences on the 
observed tolerance phenotype. 

Active 
stimulon/function Gene(s)  Postulated effect on phenotype 

Cell Wall Stress Stimulon [9], including penicillin binding 
protein pbp2 and fmtA (Figure 5b) tolerance to β-lactams [3] 

SOS response 
[1], including fluoroquinolones 
targets gyrA-B and parC-E (Figure 
5c) 

tolerance to fluoroquinolones [10] 

Heat shock response [1] (Figure 5e) 

tolerance to β-lactams [11, 12], 
aminoglycosides [13] and possibly 
macrolides (Pth-mediated peptidyl-tRNA 
processing) [14] 

Repressed function     

SOS response [1] ftsz (cell division protein) tolerance to β-lactams [15] 

Energy metabolism electron transport chain 
(Supplementary Figure 6) 

tolerance to aminoglycosides         
(decreased proton motive force) [16] 

Translation [4] (Figure 3c) 

tolerance to 
aminoglycosides/macrolides, indirect 
tolerance to β-lactams and 
fluoroquinolones                               
(decreased translation rate ) [7, 17-19] 
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Supplementary Table 3. Overview of main genes upon persistence possibly implicated in evolution 
to resistance phenotype. 

Activated gene(s) FC expression Effect on phenotype 
Low fidelity polymerase V umuC  
(Figure 5c) 20.1 SR- and SOS-mediated adaptive mutagenesis  

resistance to fluoroquinolones [20] 
Low fidelity polymerase IV dinB 
(Figure 5c) 2.2 SOS-mediated adaptive mutagenesis 

resistance to fluoroquinolones [20] 

Competence genes (comK, comC) 
(Supplementary Figure 11) 39.1; 14.5 

SR-mediated (comK) 
Competence, increase horizontal gene 
transfer frequency [21] 

vraR-vraS two-component system 4.5; 5.3 CWSS control 
resistance to cell wall-acting agents [3] 

methicillin resistance protein fmtA 
(Figure 5b) 9.1 SR- and CWSS-mediated  

methicillin resistance [22] 

methicillin resistance protein fmtB 3.3 methicillin resistance [23] 

methicillin resistance determinant 
protein fmhA 6.8 methicillin resistance [24] 

 
MATE transporter mepA 11.3 multidrug resistance [25] 
MFS transporters 
(SAOUHSC_02531 ; sdrM ; lmrS) 21.0 ; 3.2 ; 1.6 multidrug resistance [25] 

 

 

Supplementary Table 4. Primers for quantitative real-time PCR. 

Description Template [26] Sequence (forward) Sequence (reverse) 

codY SH1000 GGTGGAGGGGAAAGATTAGG GCGCGCTTCTTTTTCTACTT 
rsh SH1000 CCCCAGCGAGTGATGTTATT AATTTTGCCATTCACCTTGG 

relQ SH1000 TATGGAGCGACGTGTGAAAG GAATTCCGGCAATATCCAGT 

relP SH1000 AAGCAAGCGGTTGATGAGTT CGATTGGTTTAACACGACCAG 

gltD SH1000 AAAGTGGCAATCGTTGGAAG AACCGCCTGATTCTCTAGCA 

thrC SH1000 AATGTTTGGCTTCCAAGCTG CGCCTTATCCCAACTAGCAG 

thrA SH1000 TGTATGCCACTGACCCAAGA GCACCTAAAGCGCTCATTTC 

ilvB SH1000 ACAGACGTGGGACAACATCA GCACCAATTGACGAAGGAAT 

serS SH1000 GTGAAGCAGGATCAGCAGGT TTGCTTCTGCGTTTGTTGTC 

leuS SH1000 GTTGGACATCCTGAGGGCTA CGTTGCCAGTGTCTAAAGCA 

rplA SH1000 CACCAGACATGATGGGTGAA ACCAGCTTTTTCAGCACGAT 

rplM SH1000 GATGCTGAAGGCCAAACATT CCAGTATCAACGTGTGGTGTG 

rimL SH1000 CACAAGCAGTTGAGGCATTG AATCCCAGCCTTTCAGGAAT 

prfA SH1000 GCGATTTTTGCTGGTGATTT CCACCATGGTCACTTTCAGA 

gmk SH1000 AAGGTGCAAAGCAAGTTAGAA CTTTACGCGCTTCGTTAATAC 
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