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Abstract—Four small molecular receptors of vancomycin have been designed to make part of a novel biosensor device based on the
FTIR-ATR detection: N-Boc (2a) or N-Ac (2b)-6-aminocaproyl-DD-Ala-DD-Ala and N-Boc (3a) or N-Ac (3b)-6-aminocaproyl-DD-Ala-
DD-Ser. Using an original microbiological approach to assess the competition of compounds with the natural target of vancomycin in
bacteria, EC50 values of 6.3–8.0 · 10�5 M (2a–b) and 7.1–9.3 · 10�4 M (3a–b) were determined. Vancomycin:2b complex was char-
acterized by MS.
� 2007 Elsevier Ltd. All rights reserved.
Immobilisation of bioactive molecules on solid supports
has gained a growing interest because the resulting
devices can be used in various detection systems called
biosensors.1 These allow the specific recognition of a
free analyte (the ligand) by a target (the receptor) which
is tightly bound to the device surface. Sensors based on
the molecular recognition of biomolecules have already
attracted intensive interest in many fields such as
environmental analysis, monitoring of biotechnological
processes, and medical diagnosis and control.2 Among
the different surface-sensitive techniques applied to
detect ligand–receptor interaction, the FTIR-ATR
method (Fourier transform infrared spectroscopy in
the attenuated total internal reflection mode) is of
particular interest since it allows for high-sensitive
label-free detection.2
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In the course of a programme devoted to the develop-
ment of biosensors based on the FTIR-ATR spectros-
copy detection,3 we are engaged in the detection and
quantification of the glycopeptide antibiotic vancomycin
in human fluids. Vancomycin is of large clinical impor-
tance as it is currently the most often recommended
antibiotic for treating infections caused by methicillin-
resistant Staphylococcus aureus (MRSA) in hospitals.
Yet, it requires repeated blood level monitoring and
rapid delivery of the results to the clinician to ensure
optimal efficacy and avoid undue toxicity.4

The antibiotic activity of vancomycin results from
strong non-covalent interactions (five hydrogen bonds)
between the drug and the C-terminal motif of the penta-
peptide LL-Ala-DD-Glu-LL-Lys-DD-Ala-DD-Ala present in the
cell wall peptidoglycan precursor of procaryotes.5

Recently, vancomycin has been used in single-molecule
force spectroscopy to detect and image the localization
of free DD-Ala-DD-Ala termini on the surface of bacteria.6

In bacteria in which this bonding motif is terminated
by DD-Lac or DD -Ser, the vancomycin affinity is markedly
reduced, resulting in resistance to this antibiotic.7

The usual simplified model to study the interaction of
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vancomycin and its bacterial target is the N-a-Ac-LL-Lys-
DD-Ala-DD-Ala tripeptide (1) for which the molecular basis
of vancomycin affinity is well established (Scheme 1)1c

and which has been used, after immobilisation on aga-
rose, to purify vancomycin from fermentation broth.8

In view of immobilising vancomycin binding motifs
(receptors) on an ATR optical element, two key ques-
tions need to be addressed, namely: (i) the possibility
of replacing LL-Lys with 6-aminocaproic acid (this struc-
tural modification has the advantage of suppressing a
chiral centre and simplifying the synthesis of the biosen-
sor); (ii) the possibility of recycling the biosensor thanks
to the formation of weaker complexes than the one
formed with LL-Lys-DD-Ala-DD-Ala.

In this communication, we have selected four potential
synthetic targets (2a–b and 3a–b) ending, respectively,
with DD-Ala or DD-Ser (Scheme 2). Before their immobili-
sation on solid supports via the NH2-aminocaproyl end-
ing, those molecules have been subjected to HPLC
(High Performance Liquid Chromatography), MS
(Mass Spectrometry) and microbiological studies to
determine their ability to bind to vancomycin in com-
parison with compound 1. Since neither the a-N-Ac
nor the e-NH2 groups of 1 are considered critical in its
binding to vancomycin, we speculated that the first
group could be removed and that the second one could
be used for surface anchoring. This has been modelled
Scheme 1. Interaction between vancomycin and 1.

Scheme 2. Different 6-aminocaproyl mimics of the DD-Ala-DD-Ala

receptor.
here by masking the e-NH2 with t-butyloxycarbonyl or
acetyl groups.

The target molecules 2–3 were prepared as usual in
peptide chemistry (Scheme 2). Briefly, the amine
function of 6-aminocaproic acid was protected with
tert-butyloxycarbonyl group (Boc2O, NaOH (1 M),
dioxane/H2O (2:1), 0–20 �C, 17 h.) and the acid func-
tion was activated as N-hydroxysuccinimidyl ester
(NHS, DMAP, DCC, CH2Cl2, 0–20 �C, 17 h.). This es-
ter 4a was reacted with commercial DD-Ala-DD-Ala using
PyBOP (benzotriazol-1-yl-oxytripyrrolidinophosphoni-
um hexafluorophosphate) as coupling reagent.9 The
resulting N-Boc-6-aminocaproyl-DD-Ala-DD-Ala peptide
2a was purified by chromatography. DD-Ala-DD-Ser (5b)
was obtained by coupling commercial H-DD-Ser-(Ot-
Bu)-Ot-Bu with Boc-DD-Ala-OH (PyBOP, TEA, MeCN,
20 �C, 2 h.) followed by hydrolysis of the tert-butyl es-
ters (TFA/CH2Cl2 (1:1), 20 �C, 1 h.). N-Boc-6-amino-
caproyl-DD-Ala-DD-Ser (3a) was prepared in a same
manner as for 2a.

From commercially available 6-acetamidocaproic acid
(4b), the two analogous mimics 2b and 3b were obtained
in the same conditions.10

HPLC (RP C18 column and UV detection)11 was used
to follow the formation of complexes between vancomy-
cin (obtained as Vancocin� 500 from GlaxoSmithKline,
Genval, Belgium) and selected target compounds. Van-
comycin (67 lM final concentration) was mixed with
increasing concentrations of compounds 1 or 2a in aque-
ous solution (pH 7.4). A 52.2% and a 73.9% reduction of
the free vancomycin concentration were observed at a
vancomycin:target compound molar ratio of 1:25 for 1
and 2a, respectively. We, however, were not able to iden-
tify or to isolate the corresponding vancomycin com-
plexes by (semi-preparative) HPLC. Yet, direct
injection of the mixtures in a mass spectrometer led to
unambiguous evidence of complex formation (analysis
performed with electrospray ionization [ESI]) using the
negative ion mode (data processed by ExcaliburTM ver-
sion 1.2 software). Figure 1 shows a typical collision-in-
duced dissociation spectrum of a vancomycin:2b
mixture (1:25 molar ratio). A similar finding was made
with a vancomycin:1 mixture.12

A microbiological approach was then used to directly
assess the competition of compounds 2a, 2b, 3a and
3b with the natural target of vancomycin in susceptible
bacteria. For this purpose, 106 viable bacteria/mL (col-
ony forming units [CFU]) of a fully sensitive S. aureus
(ATCC 25923) were exposed to a constant concentra-
tion of vancomycin (1 mg/L [0.69 lM] corresponding
to its minimal inhibitory concentration as determined
by broth microdilution technique13) and increasing
concentrations of the target compounds (molar ratios
1:1 to 1:100,000). The mixtures were then incubated
for 5 h at 37 �C in Mueller–Hinton cation-adjusted
broth. Bacterial killing or growth was then evaluated
by colony counting13 (in this system, vancomycin alone
caused a 1 log CFU decrease, whereas cultures made
in the absence of vancomycin showed a 2 log CFU



Figure 1. Fragmentation spectrum of the monoanionic vancomycin + 2b at 1:25 molar ratio. The arrowhead points to an m/z value consistent with a

complex vancomycin + 2b-2H (1762.87).

Figure 2. Competition between the vancomycin natural target in

S. aureus and the target analogues 1, 2a/2b, 3a/3b, or the dipeptide

DD-Ala-DD-Ala.

Table 1. EC50 values of the compounds tested in competition with the

vancomycin natural target in S. aureus

Compound EC50

Observed log

(vancomycin:target)

molar ratio

Calculated target

concentration (M)a

1 0.984 ± 0.014 6.6 · 10�6

2a 1.964 ± 0.011 6.4 · 10�5

2b 2.066 ± 0.007 8.0 · 10�5

3a 3.011 ± 0.010 7.1 · 10�4

3b 3.129 ± 0.004 9.3 · 10�4

DD-Ala-DD-Ala 4.101 ± 0.009 8.7 · 10�3

a 10log(vancomycin:target molar ratio) · 0.69 · 10�6.
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increase; the diluent used to solubilize compounds 2a
and 2b [DMSO 1% final concentration] was without
influence).

Results are shown in Figure 2 and Table 1.14 Com-
pound 1 proved competitive with an apparent EC50

(half maximal effective concentration) value of
6.6 · 10�6 M, in agreement with previous, independent
measures of its affinity constant with vancomycin
(2.1 · 10�6 M).15 In contrast, the dipeptide DD-Ala-DD-
Ala was poorly competitive, demonstrating the critical
role of the far-left hydrogen bound (see Scheme 1) in
the binding of compound 1 with vancomycin. Replace-
ment of N-a-Ac-LL-Lys by N-protected-6-aminocaproyl
(2) increased the EC50 of about 1 log, suggesting that
the a-N-Ac plays a so far undescribed, albeit minor,
role in vancomycin binding to its target. Conversely,
an acetyl or a more bulky group such as t-Boc on
the e-NH2 group was not critical. Replacing the termi-
nal DD-Ala by DD-Ser (3) further increased the EC50

(about one log for 3a/3b compared to 2a/2b) in
accordance with published values for the difference in
affinities between N-a-Ac-LL-Lys-DD-Ala-DD-Ala and
N-a-Ac-LL-Lys-DD-Ala-DD-Ser.16

This simple and inexpensive competition assay thus pro-
vided useful information for the selection of the candi-
date targets. Our microbiological method could be
routinely used to determine the binding affinity of syn-
thetic small molecules towards vancomycin.

In conclusion, we found that N-protected-6-aminocap-
royl-DD-Ala-DD-Ala (2) still binds vancomycin with an
apparent dissociation constants of the order of
10�5 M. As the plasma concentrations of vancomycin
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that need to be monitored in patients (15–50 mg/L)17 are
within the same molar range, these analogues could be
used as potential receptors for FTIR-ATR-based detec-
tion of vancomycin in the clinics. 6-Aminocaproyl-DD-
Ala-DD-Ser derivatives (3) could provide an alternative
if a less tight binding was necessary to obtain faster
and more complete dissociation in washout-phases.
Since the Boc-compounds are easily N-deprotected for
further linking to germanium devices,3 they are cur-
rently used for the effective development of a vancomy-
cin biosensor for medical applications.
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