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The lipopeptide surfactin exhibits promising antimicrobial activities which are hampered by haemolytic toxicity.
Rational design of new surfactin molecules, based on a better understanding of membrane:surfactin interaction,
is thus crucial. We here performed bioimaging of lateral membrane lipid heterogeneity in adherent living
human red blood cells (RBCs), as a new relevant bioassay, and explored its potential to better understand
membrane:surfactin interactions. RBCs show (sub)micrometric membrane domains upon insertion of BODIPY
(*) analogs of glucosylceramide (GlcCer*), sphingomyelin (SM*) and phosphatidylcholine (PC*). These domains
exhibit increasing sensitivity to cholesterol depletion by methyl-β-cyclodextrin. At concentrations well below
critical micellar concentration, natural cyclic surfactin increased the formation of PC* and SM*, but not GlcCer*,
domains, suggesting preferential interaction with lipid* assemblies with the highest vulnerability to methyl-
β-cyclodextrin. Surfactin not only reversed disappearance of SM* domains upon cholesterol depletion but further
increased PC* domain abundance over control RBCs, indicating that surfactin can substitute cholesterol to promote
micrometric domains. Surfactin sensitized excimer formation from PC* and SM* domains, suggesting increased
lipid* recruitment and/or diffusion within domains. Comparison of surfactin congeners differing by geometry,
charge and acyl chain length indicated a strong dependence on acyl chain length. Thus, bioimaging of micrometric
lipid* domains is a visual powerful tool, revealing that intrinsic lipid* domain organization, cholesterol abundance
and drug acyl chain length are key parameters for membrane:surfactin interaction. Implications for surfactin
preferential location in domains or at their boundaries are discussed andmay be useful for rational design of better
surfactin molecules.

© 2013 Elsevier B.V. All rights reserved.
1. Introduction

Decades of world-wide antibiotic use have led to an increased bac-
terial resistance which urges to find new agents. Biological properties
of surfactin, a lipopeptide produced by Bacillus subtilis, suggest it
could be a potential antibacterial agent. Natural surfactin (hereafter
referred to as “surfactin”) is composed of an heptapeptide cycle
closed by a C13 to C15 hydroxy fatty acid forming a lactone ring,
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with strong amphiphilic character explaining bioactivity as surfac-
tant. Surfactin exhibits additional biological properties, including
antibacterial, antiviral and hemolytic activities [for a review, see 1].
Surfactin's biological activity is determined by an interaction with
membranes, including insertion into lipid bilayers, modification of
permeability and membrane solubilization by a detergent-like mech-
anism [2]. This interaction is highly dependent on surfactin concen-
tration, as demonstrated in model membranes with coexisting fluid
disordered and gel phases [3]. To prevent hemolysis, a major limita-
tion to medical applications, Dufour and collaborators have synthe-
sized various linear surfactin analogs differing by charge and
hydrophobicity (for structures, see Suppl. Fig. 1). In comparison to cy-
clic congeners, linear surfactins showed reduced surface activity and
hemolysis [4].

So far, membrane:surfactin interactions have been mainly studied
in elementary artificial model systems made of one or two phospho-
lipids, thus ignoring major membrane components such as cholester-
ol and sphingolipids (SLs), as well as membrane lateral heterogeneity.
SLs include the zwitterionic sphingomyelin (SM), which bears the
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same phosphocholine headgroup as phosphatidylcholine (PC), and
glycosphingolipids (GSLs), a heterogeneous family comprising mono
(e.g. glucosylceramide; GlcCer), di (e.g. lactosylceramide) and more
complex GSLs such as ganglioside GM1 [for a review, see 5]. Membrane
lipid bilayers, long viewed as homogenous solvent for membrane pro-
teins [6], actually show lateral heterogeneity at two different scales:
transient nanometric rafts [7–11] vs more stable (sub)micrometric/
mesoscale domains. Such domains have not only been evidenced
on artificial vesicles [8,12–17] but also documented on living cells.
They were initially predicted by FRAP [18]; further implied by single-
molecule tracking based on discrete jumps between “mesoscale”
domains [19–21]; and directly visualized by confocal imaging after in-
sertion of fluorescent analogs at trace levels in various cells, including
red blood cells (RBCs) [22–27]. Yeast plasma membrane (PM) proteins
also show a patchwork of distinct micrometric domains [28–31].

Since antibacterial potential of surfactin is hampered by intrinsic
hemolytic properties which are influenced by drug interaction with
the bilayer, we here performed bioimaging of lateral membrane lipid
heterogeneity in adherent human red blood cells (RBCs), as a new
relevant bioassay, and explored its potential to better understandmem-
brane:surfactin interactions. RBCs show micrometric domains readily
evidenced by confocal microscopy upon insertion of trace levels of
fluorescent analogs (BODIPY, *) of major polar lipids [22,26,27]. We
thus probed the effect of various natural and synthetic surfactins on
membrane organization using lipid* domains as read-out: (i) cyclic
natural surfactin (referred to as surfactin-C13–C15 or surfactin), bearing
13, 14 and 15C acyl chains; (ii) the purified natural SNC14 (Surfactin
Natural Cyclic with 14C-acyl chain length); as well as (iii) synthetic lin-
ear analogs differing by charge and hydrophobicity, SAL14 (Surfactin
Acylated Linear with 14C-acyl chain length) and three SSLs with
increased acyl chain lengths (SSL10, 14 and 18, Surfactins Synthetic
Linear with 10, 14 or 18C).

RBCs offer several advantages as experimental system. First, they
allow studying lipid lateral organization without artifacts: (i) they
are featureless at the micrometric level; (ii) they do not perform
endocytosis nor lipid metabolism; (iii) their membrane asymmetry
is well-characterized [32], including the occurrence of rafts [33–35].
Second, RBCs have a uniquely high content of cholesterol (~40 mol%
vs ~30 mol% in fibroblasts vs ~15 mol% in blood platelets), which is
a key regulator of both membrane fluidity via lipid packing and
membrane deformability via modulation of PM protein interactions
at the cortical cytoskeleton interface [36]. RBCs also exhibit a strong
membrane:cytoskeleton anchorage, thanks to two non-redundant
4.1R and ankyrin-based complexes [37]. Third, RBCs have been used
to evaluate surfactin toxicity [4]. Fourth, we recently reported in
details by vital confocal imaging segregation of BODIPY analogs of
GSLs* (e.g. GlcCer*), SM* and PC* into structurally distinct micrometric
domains in RBCs [22,26,27]. We observed that all GSLs*, SM* and PC*
domains disappear upon RBC stretching, indicating a control by mem-
brane tension. However, domains are differentially modulated by: (i)
temperature (peaking at 20 °C for SM* and PC*while steadily increasing
up to 37 °C for GlcCer*); (ii) cholesterol (suppression of SM* and PC*
domains by minor cholesterol depletion but preservation of GlcCer*
domains); and (iii) the two membrane:cytoskeleton anchorage com-
plexes (differential association with 4.1R complexes upon antibody
patching and differential response to uncoupling at 4.1R and ankyrin
complexes). The relevance of BODIPY-lipidmicrometric domains for en-
dogenous lipids despite BODIPY substitution of acyl chain is supported
by three observations: (i) co-localization of exogenous GM1* with
endogenous GM1 labeled by cholera toxin in RBCs; (ii) identity of PM
domains in CHO cells upon direct insertion of SM* vs metabolic conver-
sion of ceramide* into SM*; and (iii) selective disappearance of SM* do-
mains upon depletion of endogenous SM [22,26,27].

We found that interaction of surfactins with RBC membrane, as
reflected by impact on fluorescentmicrometric lipid domains, is dictated
by endogenous cholesterol content, lipid* domain organization and
surfactin acyl chain length. Implications for preferential surfactin interac-
tion with membranes of specific lipid composition and lateral heteroge-
neity are discussed. This straightforward confocal imaging assay may
help understanding surfactin surface activity and designing less toxic
surfactin derivatives.

2. Materials and methods

2.1. RBC isolation and immobilization

This study was approved by the Medical Ethics Institutional
Committee and the blood donors gave written informed consent.
RBCs were isolated from healthy volunteers. Blood was collected by
venopuncture into dry EDTA (K+ salt)-coated tubes, diluted 1:10 in
medium (DMEM containing 25 mM glucose and 25 mM HEPES) and
washed twice by centrifugation at 133 g for 2 min and resuspension.
For spreading onto poly-L-lysine-coated coverslips, RBCs were plated
at ~20.106 cells/ml onto 2-cm2 coverslips precoated with 0.1 mg/ml
70–150 kDa poly-L-lysine (PLK; Sigma) at 20 °C for exactly 4 min
after which the suspension was removed and replaced by fresh medi-
um, in which RBCs were allowed to spread for another 4 min.

2.2. RBC treatments

Surfactin-C13–C15 (a natural mixture of 13, 14 and 15C-acyl chain
lengths, in proportion 3:42:52) and SNC14 (for Surfactin Natural
Cyclic with 14C) were extracted from a B. subtilis S499 culture super-
natant. Synthetic surfactins, SAL14 (Surfactin Acylated Linear with
14C) as well as SSL10, SSL14 and SSL18 (Surfactin Synthetic Linear
with 10, 14 and 18C in the acyl chain respectively), were prepared
as described [4]. Unless otherwise stated, RBCs were preincubated
in suspension with 0–1 μM surfactins at 37 °C for 30 min, before
spreading onto poly-L-lysine-coated coverslips. For cholesterol deple-
tion, cells were preincubated with 0.25 mM methyl-β-cyclodextrin
(mβCD; Sigma) at 37 °C for 1 h. For combined treatments, RBCs
were first treated with mβCD for 30 min at 37 °C then with surfactin
in the continued presence of mβCD for another 30 min. These RBCs
were pelleted at 133 g for 2 min and gently resuspended in DMEM
for adhesion to poly-L-lysine-coated coverslips. Alternatively, RBCs
labeled with BODIPY-lipids (lipids*) were imaged during exposition
to surfactins. To measure residual cholesterol, lipids were extracted
and cholesterol was determined by Amplex Red Cholesterol kit
(Invitrogen) in the absence of cholesterol esterase [22].

2.3. RBC labeling and vital imaging

RBCs were labeled with BODIPY-lipids (lipids*; Invitrogen) after
spreading onto poly-L-lysine-coverslips. Briefly, cells were rinsed in
DMEM and labeled at 20 °C for 15 min with 0.75 μM SM* or 1 μM
PC* or 1 μM GlcCer* (except otherwise stated) in DMEM containing
equimolar defatted bovine serum albumin (DF-BSA; Sigma) [26]. For
confocal imaging, coverslips were placed bottom-up into Lab-Tek
chambers and examined in the green channel with a Zeiss LSM510 con-
focal microscope using a plan-Apochromat 63x NA 1.4 oil immersion
objective in a thermostated cabinet set at 37 ± 1 °C (XL/LSM incubator,
Zeiss; Tempcontrol 37-2, PeCon) [26]. For excimer studies, RBCs were
excited at 488 nm and images were simultaneously acquired in the
green (λem 520 nm) and red channels (λem 605 nm) [27].

2.4. Hemolysis

Hemolysis was evaluated at 0.5 μM surfactins by hemoglobin
release [22,38]. 0.2% Triton X-100 induced complete hemolysis, yielding
the 100% control value.
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Fig. 1. In adherent RBCs, natural cyclic surfactin-C13–C15 increases the abundance of
BODIPY-PC (PC*) micrometric domains. (A) Vital imaging of RBCs preincubated with
surfactin. Freshly isolated RBCs were either preincubated in suspension with 0.5 μM
surfactin for 30 min (b) or kept untreated (a), then attached onto poly-L-lysine
(PLK)-coated coverslips for 4 min and allowed to spread for additional 4 min, labeled
with PC*, washed and immediately imaged at 37 °C. Notice at left that PC* labels several
micrometric domains on partially spread cells (b8 μm; arrowheads) but not on more
spread cells (arrows). At right, the number of domains is increased by surfactin, including
on highly spread cells. Scale bars, 5 μm. (B) Time-lapse vital imaging of RBCs incubated on
stage with surfactin. RBCswere attached–spread on PLK-coverslips as above, labeled with
PC*, washed and imaged at 37 °C following the addition of 0.75 μM surfactin. Notice
progressive domain appearance (arrow) and enlargement (arrowhead). Scale bar, 2 μm.
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2.5. Thin layer chromatography

Lipids* were inserted in the RBC membrane at 0.75 or 1 μM. After
washing, all lipids (endogenous and inserted*)were extracted, separated
by thin layer chromatography (TLC) in chloroform:methanol:15 mM
CaCl2 (65:35:8; v/v/v) [39] and revealed by charring densitometry after
staining with 10% cupric sulfate in 8% O-phosphoric acid [40]. Band in-
tensity of inserted lipid* was quantified and expressed by reference to
the sum ofmajor lipids (cholesterol, PC, phosphatidylethanolamine, cer-
amide and SM) from the same sample, after correction for band intensity
of corresponding endogenous lipid.

2.6. Statistical analyses

Values are means ± SEM. Statistical significance of comparisons
was tested by Student's t test. NS, not significant; *, p b 0.05; **,
p b 0.01; and ***, p b 0.001.

3. Results

3.1. Micrometric lipid* domains in control RBCs are restricted by RBC
stretching andmembrane:cytoskeleton anchorage but favored by cholesterol

Using vital confocal imaging, we recently reported that fluores-
cent lipid analogs of glycosphingolipids (e.g. BODIPY-GlcCer
[GlcCer*]), sphingomyelin (BODIPY-SM [SM*]) and phosphatidyl-
choline (BODIPY-PC [PC*]) spontaneously form (sub)micrometric
domains at the plasma membrane (PM) of living RBCs adherent
onto poly-L-lysine (PLK)-coated coverslips and of CHO cells (for
lipid analog structures, see [26,27]). These domains are (i) readily
visible on RBCs partially spread onto PLK-coated-coverslips, (ii)
structurally and kinetically distinct, (iii) of decreasing packing:
GlcCer* > SM* > PC*, and (iv) preferentially found at the outer
PM leaflet, as revealed by their complete disappearance upon sur-
face back-exchange by BSA (data not shown). Domains are probe
concentration-independent, since increasing SM* concentration
from 0.5 to 3 μM changed neither the number nor the size of
domains (data not shown; [22]). The relation with endogenous
lipid compartmentation has been discussed elsewhere [22,26,27].

All micrometric lipid* domains are strongly dependent onmembrane
tension since they can be seen on RBCs partially spread on the coverslip
but not in most spread cells (see Fig. 1A, a). Moreover, domains are nu-
merous when RBCs are barely attached, decline to a stable low number
at partial spreading, and vanish upon maximal stretching [22]. Interest-
ingly, they (re-)appear or increase in size upon incubation into mildly
hypotonic medium (data not shown; [26]). In addition, domains are
differentially restricted by membrane:cytoskeleton anchorage [22],
presumably preventing domain increase in size and number. Accordingly,
we observed that the combination ofmembrane:cytoskeletonuncoupling
at 4.1R complexes uponPKCactivation andmembrane relaxationby incu-
bation inmildly hypotonicmedium led to a strong increase of GlcCer* do-
main abundance in comparison to control RBCs (data not shown). In
contrast to membrane:cytoskeleton anchorage which restricts domains,
cholesterol appears as a stabilization factor for PC* and SM* domains [22].

3.2. Cyclic natural surfactin-C13–C15 promotes PC* and SM*, but not
GSLs*, micrometric domains

Because membrane:surfactin interaction was so far mainly studied
on model membranes containing mixtures of phosphatidylcholines
with various acyl chain lengths and saturation levels [3,41,42], we
first examined if surfactin, a natural mixture of 13, 14 and 15C-acyl
chain lengths (surfactin-C13–C15), could affect the less-packed PC*
micrometric domains when applied at concentrations b1 μM, i.e. well
below the critical micellar concentration ([3,43]; see Suppl. Table 1).
As previously reported [22], PC* analogs labeled (sub)micrometric
domains on control RBCs partially spread on the coverslip (typically
b8 μm in diameter; arrowheads at Fig. 1A, a ), but not in most spread
cells (arrows at Fig. 1A, a), presumably due to high membrane tension.
When RBCs were preincubated for 30 min with 0.5 μM surfactin, PC*
domain abundance was increased by ~2-fold (Fig. 1A, b; quantification
at Fig. 2B). The effect of surfactin can be attributed neither to drug toxicity
(no hemolysis was observed; data not shown) nor to an increased inser-
tion of PC* in the RBC membrane, as evaluated by thin layer chromatog-
raphy (data not shown). The kinetics of domain inductionwasmonitored
by time-lapse imaging on stage in cells prelabeled with PC*. Tominimize
photobleaching, a slightly higher surfactin concentration was used
(0.75 μM instead of 0.5 μM). Induction of new PC* micrometric domains
by surfactinwas obvious but slow (Fig. 1B). Thus, like incubation inmild-
ly hypotonic medium or membrane:cytoskeleton uncoupling (see
Section 3.1), surfactin increases the abundance of PC* domains.

To further address if the effect of low (up to 1 μM) concentrations of
surfactin on micrometric domains depended on lipid* domain packing,
we next looked at the more packed SM* and GlcCer* domains [27]. As
shown in Fig. 2, surfactin also increased the abundance of SM* domains
(Fig. 2A, i, j), but not that of GlcCer* domains (Fig. 2A, k–o). The effect
was concentration-dependent, peaking at 0.5 μM for PC* (Fig. 2A, c) vs
0.75 μM for SM* (Fig. 2A, i). Thus, surfactin best promoted domains for
the less packed lipid analogs (PC* > SM*), without detectable effect on
most packed GSLs*.

3.3. Surfactin-C13–C15 reverses the attrition of PC* and SM* domains
induced by cholesterol depletion

Because of the high cholesterol concentration of RBCs and the
highest vulnerability of less packed domains to marginal cholesterol
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Fig. 2. Surfactin-C13–C15 favors PC* and SM*, but not GlcCer*, domains in a
concentration-dependent manner. (A) Representative confocal images. Freshly isolated
RBCs were preincubated (b–e; g–j; l–o) or not (a, f, k) in suspension with the indicated con-
centration of surfactin-C13–C15 for 30 min, attached–spread onto PLK-coverslips, labeled
with PC* (a–e), SM* (f–j), or GlcCer* (k–o), washed and immediately imaged at 37 °C, as in
Fig. 1. Notice the selective increase of PC* (c–e) and SM* domains upon surfactin (i, j), with
different peak concentrations (0.5 μMsurfactin for PC* and 0.75 μMfor SM*); the abundance
of GlcCer* domains is unchanged. All scale bars, 2 μm. (B) Morphometry. Micrometric do-
mains are means ± SEM of (i) 44–664 RBCs for PC*; (ii) 23–322 RBCs for SM*; and (iii)
99–316 for GlcCer*, pooled from 4 independent experiments and normalized to untreated
RBCs taken as 100%.
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depletion [22], we thus asked whether surfactin can overcome the
effect of cholesterol depletion. To this aim, we induced amoderate cho-
lesterol depletion (~25%) by 0.25 mMmethyl-β-cyclodextrin (mβCD),
which causes complete attrition of PC* and SM*, but largely preserves
GlcCer*, domains ([22]; Fig. 3A, c, g and quantification at Fig. 3B). Expo-
sure of mβCD-treated RBCs to surfactin not only prevented disappear-
ance of PC* and SM* domains but further increased the abundance
of PC* domains by >3-fold as compared to untreated control RBCs
(Fig. 3A; quantification at Fig. 3B;film at Fig. 3C). These results indicated
that surfactin can substitute cholesterol to favor PC* and SM*micrometric
domains or that both act in concert.

3.4. Surfactin-C13–C15 increases excimer formation at PC* and SM* domains

Based on the reversion by surfactin of the attrition of PC* and SM* do-
mains induced by mβCD, we then ask more directly whether the
lipopeptide could, like cholesterol, affect lipid* domain organization. To
this aim, we looked at clustering-dependent shift of BODIPY spectral
properties, known as excimer formation [27]. This phenomenon results
from a partial conversion of the primary emission peak at λem 520 nm
(green) to a secondary emission at 605 nm (red). We therefore looked
at green and red fluorescence emission from PC* and SM* domains,
either at usual concentrations (Fig. 4a–d) or at higher SM* concentra-
tion to sensitize excimer formation ([23,26,27]; Fig. 4e). In control
RBCs, no significant excimer formation was detected by line scans at
the usual PC* and SM* concentration (Fig. 4a, c), but the phenomenon
was obvious upon image inspection at 3 μM SM* (Fig. 4e, right, arrow-
heads) and can be quantified by line scan (up to ~25% red/green emis-
sion ratio; Fig. 4e′). Upon treatment with surfactin-C13–C15, excimer
formation of cells exposed to 1 μM PC* or 0.75 μM SM* became detect-
able (arrowheads at panels b,d, right; compare with panels a, c),
reaching emission ratios of ~15% (Fig. 4b′, d′).

3.5. Synthetic surfactins increase PC* domain abundance in an acyl chain
length-dependent manner

Having shown that themixture known as surfactin-C13–C15 affected
PC* and SM* domains in a cholesterol-sensitive manner, we next aimed
at identifying the structural features of the surfactinmolecule responsi-
ble for this effect. To this aim, several surfactins were compared: (i)
purified natural cyclic surfactin with uniform acyl chain length of 14C
(referred as SNC14); (ii) linear analogs with the same 14C-acyl chain
and further differing in charge (2 vs 3 acid groups), referred as SAL14
and SSL14; and (iii) linear analogs differing in acyl chain length (10 vs
14 vs 18 carbons), referred as SSL10, SSL14 and SSL18 (for structures
and characteristics, see Suppl. Fig. 1 and Suppl. Table 1, respectively).
All congeners were used at the same concentrations as natural cyclic
surfactin-C13–C15 and none caused any hemolysis (data not shown).

Irrespective of their geometry (cyclic vs linear) and charge (2 vs 3), all
tested surfactins with 14C (purified natural cyclic SNC14 as well as the
linear SAL14 and SSL14 with respectively 2 and 3 negative charges)
increased by ~2-fold the number of PC* domains (Fig. 5A, b, c, h), like
natural surfactin mixture with 13 to 15C. This indicated that surfactin
overall geometry and charge density were not determinant factors for
drug effect on PC*micrometric domains. In contrast, increasing surfactin
acyl chain length from 10 (SSL10) to 14 (SSL14) to 18C (SSL18) differen-
tially increased PC* domain abundance, from ~1.5-fold to ~3-fold as
compared to control cells (panels g, h, i at Fig. 5A and quantification at
Fig. 5B, upper panel), indicating that surfactin acyl chain length is instead
a key determinant for the increase of PC* micrometric domains.

3.6. Relation between synthetic surfactin acyl chain length and the increase
of PC* domain abundance is inverted upon cholesterol depletion

Next, to evaluate if all tested surfactins can overcome the attrition of
PC* domains induced by cholesterol depletion, a similar experiment
was performed after the removal of ~25% cholesterol by 0.25 mM
mβCD [22]. Like natural cyclic surfactin-C13–C15, purified cyclic
surfactin SNC14 and synthetic linear compounds (SAL14, SSL10-18),
whatever their geometry, charge and acyl chain length, suppressed
the effect of cholesterol depletion on PC* domains (Fig. 5A, +mβCD).
However, while surfactin with the longest acyl chain (SSL18) induced
the strongest increase of PC*domain abundance inRBCswithnormal cho-
lesterol content (see Fig. 5,−mβCD), the opposite was observed in RBCs
treated with mβCD (Fig. 5B, lower panel). Altogether, these results
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indicate that surfactin analogs increased PC* domain abundance in an acyl
chain length-dependent manner and that cholesterol depletion inverted
this tendency, suggesting thatmembrane:surfactin analog interaction de-
pends on endogenous cholesterol level.

3.7. Synthetic surfactins also affect SM* domain abundance in an acyl
chain length-dependent manner

Because synthetic surfactins can substitute cholesterol to support
PC* micrometric domains, we then asked whether and how synthetic
surfactins could also affect the more packed SM* domains [27].
Whereas no effect was observed in RBCs incubated with SNC14 and
SAL14 (Fig. 6A, b, c), acyl chain length differentially influenced SM*
domain abundance, from a ~1.5-fold decrease for the short SSL10 to
a ~1.5-fold increase for the long SSL18 (Fig. 6A, d–f; quantification
at Fig. 6B). Moreover, removing cholesterol inverted this tendency,
as observed on PC* domains: the longest acyl chain length, the lowest
SM* domain abundance (data not shown). Thus, like for PC* domains,
SM* domain abundance can be modulated by surfactin acyl chain
length. However, in contrast to PC* domains, the effect on SM*
domain abundance was differential: decreased by short surfactins
(SSL10) but promoted by long surfactins (SSL18).

image of Fig.�3
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surfactin-C13–C15 (b, d), and up to ~25% at 3 μM SM* without surfactin (e′).
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4. Discussion

4.1. Current model for micrometric BODIPY-lipid domain biogenesis and
(co-)existence in control RBCs

Before discussing how surfactin affects lipid* domain organization
and abundance, let us summarize our current view, based on this
paper and our previous studies [22,26,27], for micrometric lipid* do-
main (i) biogenesis; (ii) low cell surface coverage and round shape;
(iii) coexistence; and (iv) relevance for endogenous lipids.

Whereas micrometric lipid domains are observed with all the
three classes of polar lipids* used, i.e. GSLs*, SM* and PC*, their
abundance is differentially controlled by stabilization and restriction
machineries. Thus, GlcCer* domains are favored by high temperature
and ankyrin complexes, whereas PC* and SM* domains are promoted
by cholesterol and regulated linkage to the 4.1R complex [22,26,27].
Moreover, our studies point to three differences between PC* and
SM* domains: (i) their intrinsic propensity to form excimers (SM*
but not PC*); (ii) their interaction with 4.1R complexes, providing
either internal stabilization (SM*) or peripheral retention (PC*); and
(iii) their control by cholesterol, as regulator of membrane fluidity
(SM*) or membrane:cytoskeleton anchorage (SM* and PC*) [22,26,27].
In contrast, membrane stretching and membrane:cytoskeleton anchor-
age constitute restriction factors for domains, thereby preventing
domain expansion [22,27]. Biophysical studies should address the me-
chanical parameters governing the relation betweenmembrane tension
and lipid* domain packing and size in RBCs. Nevertheless, phase coexis-
tence at the rabbit RBC membrane studied by multiphoton microscopy
after labeling with LAURDAN allows evidencing tightly packed domains,
with different lipid packing and sizes, moving in a more fluid back-
ground phase [35].

High membrane stretching and strong membrane:cytoskeleton
anchorage in RBCs, which constitute restriction factors for lipid*
micrometric domains thereby preventing domain expansion [22],
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could explain the lower coverage by domains of the RBC vs CHO cell
surface, ~7% vs ~25% respectively [26,27]. Furthermore, high mem-
brane tension in RBCs could also restrict lipid domains into round
shape, in order to decrease domain line tension, and could explain
why lipid* domains aremore round in RBCs than in fibroblasts [26,27].

Based on double-labeling experiments, differential membrane:
cytoskeleton anchorage and differential effect of temperature, we have
previously suggested that the RBC PM is organized in at least three segre-
gated lipid* domains. However, only a fraction of the lipids* at the PM is
present in the round micrometric lipid* domains and three lines of evi-
dence support the existence of a surrounding phase. First, considering
that SM*domains cover ~7%of the PM, their ~8-fold enrichment indicates
that about half of the SM* is present in the domains and the other half
outside [26]. Second, the three classes of lipids* show a distinct number
of domains according to the temperature: whereas GlcCer* shows an in-
creasing domain number when temperature is increased from 20 °C to
37 °C, SM* andPC* showapeak of domains at 20 °C and a strongdecrease
thereafter; accordingly, a weak and homogenous labeling with PC* can
also be detected at 37 °C [27]. Third, although domains are immobile,
they show a very fast recovery after photobleaching, indicating that do-
mains* are large-scale immobile assemblies of highly dynamic individual
or small clusters of lipids*.
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Relevance of fluorescent lipid* domains for endogenous lipids is
supported by three observations: (i) co-localization of exogenous GM1*
with endogenous GM1 labeled with subunit B cholera toxin in RBCs;
(ii) identity of PM domains in CHO cells upon insertion of SM* vs meta-
bolic conversion of ceramide* into SM* at physiological temperature;
and (iii) selective disappearance of SM* upon endogenous SM depletion
[22,26,27].

4.2. Preferential formation by surfactin of less-packed PC* and SM* domains

As shown by live cell imaging of RBCs, low concentrations of
surfactin induced the formation of new PC* and SM* micrometric
domains, without obvious effect onGlcCer* domains. Based on the com-
plete abolishment of RBC PC* and SM* labeling upon back-exchange
with BSA (data not shown) and on the very limited flip-flop of surfactin
from outer to inner leaflet [42], the increased abundance of domains
induced by surfactin should be due to PC* and SM* clustering from the
surrounding lipid* pool in the outer PM leaflet. By FRAP experiments
in RBCs, we indeed observed very fast (t1/2 ~ 10 s) and high recovery
of PC* and SM* domain constituents [22]. Assuming a representative
behavior of the surfaces we analyzed, area estimations indicate that
SM* domains account from ~7% of the RBC surface at 20 °C. The respec-
tive ∼8-fold enrichment in these micrometric domains indicates that
about half of total SM* would be clustered in these domains and half
outside [26].

Although PC* and SM* differ from GlcCer* by the same small and
zwitterionic phosphocholine headgroup, this explanation for a differen-
tial effect of surfactin is not satisfactory because: (i) whereas surfactin
reversed the attrition of SM* domains induced bymoderate cholesterol
depletion, it increased by >3-fold PC* domain abundance in compari-
son to control RBCs; and (ii) changing the charge number of synthetic
surfactins (SAL14with 2 charges vs SSL14with 3 charges) had no effect
on the increase of PC* domain abundance.

Besides differences in polar headgroup size and charge, PC* and
SM* domains show a lower propensity than GlcCer* to form excimers
[23,26,27]. Because surfactin preferentially increased the abundance
of PC* and SM* domains, we favor the view that the drug preferential-
ly interacts with less-packed lipid* domains. This proposal in living cells
fits with the observation that surfactin shows a stronger insertion in
mixed monolayers containing phospholipids with short chain length
and/or in a fluid-like organization [42]. In another study, binding affin-
ity of surfactin to LUVs was higher for So- than Ld- than Lo-phases [44],
again in agreement with our data on RBCs in which Ld/So phases are
not expected to coexist due to their very high cholesterol content [45].

A third difference between lipid* micrometric domains is unequal
sensitivity to cholesterol depletion, higher for PC* and SM* than for
GlcCer* domains. We will now discuss how surfactin could interact
with membranes, by systematic comparison with the well-known
effects of cholesterol on biological membranes.

4.3. Cholesterol-like effects of surfactin

Two lines of evidence indicate that surfactin and cholesterol similar-
ly impact on micrometric domains: (i) cholesterol depletion by mβCD
and surfactin addition oppositely affected both PC* and SM* domain
abundance; and (ii) disappearance of PC* and SM* domains by mβCD
was completely abrogated by surfactin. The hypothesis of cholesterol-
like effect of surfactin will guide a further discussion on how surfactin
could affect membrane lateral organization in micrometric domains.
Cholesterol not only regulates membrane fluidity at a global level
but also favors biogenesis of micrometric lipid domains at discrete
predefined spots by promoting intrinsic polar lipid packing [22,27].
Cholesterol apparently concentrates at the boundaries between liquid
and gel-like phases, thereby reducing line tension [46]. Cholesterol
was also reported to modulate membrane:cytoskeleton coupling
[22,36,47], but this is poorly relevant for surfactins for which flip-flop
from the outer to the inner leaflet is very limited [42,48]. Arguing
against a modulation by surfactin of global membrane fluidity, the
three classes of polar lipids* were differentially affected by surfactin,
in agreement with the recent classification of surfactin into the group
of heterogeneously-perturbing surfactants which disrupt membrane
locally [49]. We thus favor the view that surfactin promotes biogenesis
specifically at PC* and SM* domains. We indeed observed a specific
increased abundance and excimer formation from these two domains.
Increased excimer formation might reflect that (i) lipid* domains got
fewer or smaller; (ii) lipids* showed a stronger preference for domains;
and/or (iii) lipid* diffusion and molecular motions within the domains
were enhanced. Based on increased domain abundance and size, the
first hypothesis can be ruled out. The effect of surfactin on domain
abundance and excimer formation would thus probably be due to a
combination of the two latter hypotheses and could be explained by a
strengthening of hydrophobic interactions between acyl chains of lipids
and surfactins, reminiscent to the wedge-like shapes of SLs and choles-
terol that allow them to come in very close apposition via van derWaals
forces [50]. Similarly, sphingosine, which also behaves as a surface-
active amphiphile, rigidifies pre-existing gel domains in mixed bilayers
[15,51,52]. We also noticed that small changes of surfactin concentra-
tions lead to contrasting effects on lipid* domains, with a peak at
0.5 μM and a subsequent decrease for PC* domains, with concomitant
increase of SM* domains. This concentration effect could be explained
by a shift of surfactin interaction, first with PC* domains, then with
SM* domains and/or at domain boundaries, thereby reducing line
tension at interface and eroding domains.

If this view is correct, then high local cholesterol concentrations
would prevent any effect of surfactin. This prediction is consistent
with the higher increase of PC* domains abundance by surfactin
in RBCs with lower cholesterol level vs normal RBCs. Accordingly, it
has been shown that the presence of cholesterol in the phospholipid
membrane attenuates the destabilizing effect of surfactins [53] and
that surfactin preferentially lyses cholesterol-free liposomes [54].
However, it seems at first glance inconsistent with the absence of
effect of addition of stigmasterol on surfactin interaction with LUVs
[44]. This apparent discrepancy might be explained by the very low
level of stigmasterol used in the latter study and/or by the ability of
cholesterol, but not stigmasterol, to form domains in DOPC/SM
bilayers [55]. The higher impact of surfactin on RBCs when cholesterol
content was decreased markedly contrasts to the behavior of other
lipopeptides produced by Bacillus species, such as fengycin, iturins
and mycosubtilin, which show high affinity for cholesterol [56–58]
via a tyrosyl residue [56]. Thus, whereas surfactin could substitute
cholesterol, the latter three drugs depend on it.

4.4. Critical surfactin structural features involved in micrometric lipid*
domain modulation

To prevent hemolysis, Dufour and collaborators have synthesized
various linear surfactin analogs differing by charge and hydrophobicity
(for structures and characteristics, see Suppl. Fig. 1 and Suppl. Table 1,
respectively). Whereas surfactin geometry and charge density did not
impact on fluorescent lipid lateral compartmentation in domains, the
acyl chain length was an important feature: the longest the chain
(SSL18), the highest the increase of PC* and SM* domain abundance.
This observation perfectly agrees with the highest insertion into DPPC
monolayer of surfactins bearing the longest acyl chain (Suppl. Table 1).
However, an opposite effect was observed in RBCs partially depleted in
cholesterol: the shortest the acyl chain, the highest the increase of PC*
and SM* domain abundance. This raises the possibility that cholesterol
removal could leave room for the small SSL10. These observations
underline that, besides surfactin structural features, host membrane
composition, e.g. cholesterol abundance, is a key parameter for
membrane:surfactin interaction, andmust be kept inmind for designing
new surfactins.
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4.5. Model for surfactin:membrane interaction and surface activity, based on
surfactin structural features and host membrane composition/organization

An inverse relation can be established between critical micellar
concentration of linear surfactin analogs (CMC, 1114 vs 302 vs 8 for
SSL10, SSL14 and SSL18 respectively; see Suppl. Table 1) [41] and
micrometric lipid* domain abundance in normal RBCs: the lowest
the CMC, the highest the domain abundance; moreover, this relation
was inverted upon cholesterol depletion. We thus propose a new
model for surfactin:membrane interaction based on lipid domain or-
ganization and cholesterol abundance/distribution. In RBCs with nor-
mal cholesterol level, long surfactins (e.g. SSL18) would preferentially
insert inside domains, because of deep insertion into the hydrophobic
core of the membrane, while short surfactins (e.g. SSL10) could only
find their place at domain boundary, as already proposed [42], reduc-
ing line tension and domain size. Accordingly, SSL10 did not increase
but decreased SM* domain abundance, in contrast to natural cyclic
surfactin. However, when cholesterol was removed, the short chain
SSL10 showed a stronger increase of PC* domains, which would fur-
ther gain access inside domains and substitute cholesterol, thereby
favoring domain coalescence.

4.6. Conclusion

Taken together, our data imply that, in addition to surfactin structure
and concentration, the modulation of the lateral organization of PM
fluorescent lipids by surfactin appears dictated by lipid* domain packing
and sterol content. The preference for membranes with a lower global
cholesterol content and for domains with low packing could explain
why surfactin preferentially disrupts bacterial membranes since pro-
karyotic membranes almost universally lack sterols and SLs [59]. This
contrasts with the poor toxicity of surfactin to fungi and plant mem-
branes [44] that contain high sterol, inositolphosphorylglycolipids and
glycosphingolipids and show lateral compartmentation in micrometric
domains [59,60]. In conclusion, the cholesterol content of the host
membrane and its organization in domains must be taken into account
to evaluate surfactin surface activity and toxicity and for designing new
surfactin analogs.

Supplementary data to this article can be found online at http://
dx.doi.org/10.1016/j.bbamem.2013.05.006.
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