Bacterial Persistence
Methods and Protocols
Bacterial Persistence

Methods and Protocols

Edited by

Jan Michiels and Maarten Fauvart

Department of Microbial and Molecular Systems,
KU Leuven - University of Leuven,
Heverlee, Belgium

Humana Press
In Vitro Models for the Study of the Intracellular Activity of Antibiotics

Julien M. Buyck*, Sandrine Lemaire*, Cristina Seral, Ahalieyah Anantharajah, Frédéric Peyrusson, Paul M. Tulkens, and Françoise Van Bambeke

Abstract

Intracellular bacteria are poorly responsive to antibiotic treatment. Pharmacological studies are thus needed to determine which antibiotics are most potent or effective against intracellular bacteria as well as to explore the reasons for poor bacterial responsiveness. An in vitro pharmacodynamic model is described, consisting of (1) phagocytosis of pre-opsonized bacteria by eukaryotic cells; (2) elimination of non-internalized bacteria with gentamicin; (3) incubation of infected cells with antibiotics; and (4) determination of surviving bacteria by viable cell counting and normalization of the counts based on sample protein content.

Keywords: Intracellular infection, Gentamicin, Antibiotic, Phagocytosis, Opsonization, Pharmacodynamics, Efficacy, Relative potency

1 Introduction

Intracellular survival of bacteria is now recognized as a major factor associated with dissemination, persistence, and/or recurrence of infections [1–5]. When residing inside eukaryotic cells, bacteria are indeed protected from the host humoral immune defenses and often adopt a dormant lifestyle less responsive to antibiotic action. Moreover, in order to exert their activity against intracellular bacteria, antibiotics have to gain access to the infected compartment within the cells and to express their activity in this specific environment [6, 7]. For these reasons, intracellular activity of antibiotics is unpredictable based on the simple evaluation of their...
activity against extracellular bacteria in broth and of their accumulation within eukaryotic cells. Appropriate models need to be developed for the correct assessment of the capacity of antibiotics to act upon intracellular bacteria.

We present here an in vitro model which allows studying the pharmacodynamics of antibiotics against intracellular bacteria. This model is highly flexible, being adaptable to several bacterial species or strains [8–11] as well as to many cell types [9, 12, 13]. It has been used to compare the activity of commercially available antibiotics [11, 14] and of molecules in preclinical or clinical development (most of which are now registered or in the late phases in clinical trials; [9, 12, 15–19]), with the aim of predicting their potential interest for the treatment of persistent infections. In the case of Staphylococcus aureus infections, it has been validated versus animal models of intracellular infection [20, 21].

2 Materials

2.1 Equipment

1. Laminar flow hood: Work is performed in a laminar flow hood in a room with biosafety level adapted to the pathogenicity of the microorganism under investigation [22].
2. CO2 incubator.
3. Bacteriology incubator.
4. Hemocytometer.
5. Spectrophotometer.

2.2 Reagents

1. Culture medium adapted for eukaryotic cell line used: usually RPMI-1640 or DMEM, supplemented with 10% fetal calf serum.
2. Cation-adjusted Mueller-Hinton broth (CA-MHB) and tryptic soy agar plates (TSA) (or any other specific media more adapted to the bacterial species investigated).
3. Sterile distilled water.
4. Sterile phosphate buffer saline (PBS): 8 g NaCl, 0.2 g KCl, 1.44 g Na2HPO4, 0.24 g KH2PO4, 1 L distilled water. Adjust to pH 7.4.
5. Human serum from healthy volunteers (for bacterial opsonization).
6. Gentamicin stock solution (40 mg/mL).
7. Stock solution of the antibiotic under study.
8. Reagents (see Note 1) or kit (several kits are commercially available) for protein assay according to the Folin-Ciocalteu method, also referred to as Lowry’s method [23].
9. Reagents (see Note 2) or kit for cell viability assay (trypan blue exclusion assay [24] or release of the cytosolic enzyme lactate dehydrogenase [25], for example).
3 Methods

The method described is illustrated in Fig. 1.

3.1 Preparation of Bacterial Suspension and of Media

1. The day before the experiment, prepare an overnight bacterial culture in 15 mL of MHB (37 °C; agitation) to obtain a stationary-phase culture.
2. Unfreeze human serum.
3. Prewarm culture medium, sterile water, and PBS at 37 °C.

3.2 Opsonization of Bacteria

Opsonization is a process by which bacteria are marked by opsonins, which are serum proteins (like antibodies) bridging bacteria to the cell surface in order to favor phagocytosis (see Note 3).

1. Centrifuge the overnight culture to pellet bacteria (7 min at 3200 × g).
2. Resuspend in 1 mL of human serum; dilute with 9 mL of eukaryotic cell culture medium (not supplemented with fetal calf serum in this case, since human serum [final concentration 10 %] is present). Do not vortex.
3. Incubate for 30–60 min at 37 °C under gentle agitation (130 rpm) [11, 26].

Fig. 1 In vitro model for the assessment of intracellular activity of antibiotics
3.3 Preparation of Eukaryotic Cells and Bacteria for Infection

1. If using eukaryotic cells in suspension, count them (for example using a hemocytometer) in order to obtain a density of 500,000–750,000 cells/mL (see Note 4).

2. If using adherent cells, plate them in multi-well plates. They should have reached 80 % confluence at the time of the experiment. Prepare extra wells to be used for cell counting at the time of the infection.

3. Centrifuge opsonized bacteria for 7 min at 3200 \( \times g \) and remove supernatant. Resuspend the pellet in 2 mL of PBS or culture medium; and calculate the bacterial concentration, based on a calibration curve establishing the correlation between colony-forming unit (cfu) counts and OD\(_{620}\) or on the turbidity of the bacterial suspension [McFarland].

3.4 Phagocytosis

This step is critical, in the sense that it is specific for each bacterial strain or species [8, 11, 14, 27] and for the cell type to use for infection [9, 12, 13, 15] and should be adapted by the experimenter (see Fig. 2). The objective is to obtain after phagocytosis

![Fig. 2 Setting up a model of intracellular infection. Left: determination of the optimal bacterial inoculum and phagocytosis time, as exemplified for P. aeruginosa PAO1 (adapted from [11]). Cells were incubated for 1 or 2 h with PAO1 at increasing bacteria-to-cell ratios (left axis). The percentage of mortality of THP-1 cells was assessed at the end of the phagocytosis period (right axis). Data for 1 h: gray symbols and bars; data for 2 h: open symbols and bars; the back bar and black dot correspond to the conditions considered as optimal for this model (dotted line: 10^6 cfu/mg protein with <10 % cell toxicity). Right: Determination of the optimal concentration of gentamicin to add to culture medium of controls during incubation to avoid extracellular contamination, as exemplified for S. aureus ATCC25923 (adapted from [14]). Change in intracellular inoculum (log scale) after 24 h of incubation of infected cells in the presence of increasing concentrations of gentamicin (expressed in multiples of the MIC (left axis) percentage of contamination of the extracellular medium in these conditions as assessed by the counting of colonies after plating of pooled culture fluids and washing media (right axis; limit of detection: 0.001 %)
an intracellular inoculum that is high enough to allow detecting intracellular bacteria in sufficient numbers but low enough to avoid killing the host cells (typically 10⁶ cfu/mg cell protein). The general principle of this part of the protocol is explained hereafter.

1. **Phagocytosis**: Add bacterial suspension to cell suspension or to adherent cells in order to obtain the desired multiplicity of infection (MOI; number of bacteria/cell); when setting up the model, use in parallel different MOI (typically 1:1; 5:1; 10:1; 20:1; 50:1). Incubate at 37 °C in a CO₂ incubator for appropriate times; when setting up the model, compare different incubation times (typically 0.5, 1, 2 h).

2. Eliminate non-phagocytized bacteria either by centrifugation (cells in suspension; 7 min; 340 g) or by elimination of the medium (adherent cells).

3. Re-incubate infected cells during 45–60 min (37 °C; CO₂ incubator) in cell culture medium (without serum) containing gentamicin at high concentration (typically 50–100 times the MIC for the bacterial strain used [11, 14]) in order to eliminate non-phagocytized bacteria that may adhere to the cell surface (see Note 5).

4. Wash three times with PBS at room temperature to eliminate bacterial debris and gentamicin.

5. Collect infected cells in 1 mL of sterile water in order to lyse them and allow for release of phagocytized bacteria.

6. Prepare logarithmic dilutions of the cell lysates in PBS and plate 50 μL on TSA or any other appropriate agar plate; proceed to colony counting after 24-h incubation.

7. In parallel, determine protein content of the cell lysates by the Folin-Ciocalteu method [23], using a commercial kit or the method described in Note 1.

8. Express the data as cfu/mg of cell protein and select for further experiments the conditions for which you obtain approx. 10⁶ cfu/mg cell protein (see Note 6).

### 3.5 Intracellular Growth

1. Re-incubate the infected cells in cell culture medium supplemented with 10 % fetal calf serum. For control conditions, add gentamicin at a concentration close to the MIC (as measured in the culture medium used for the experiment) to avoid extracellular growth (see Fig. 2) and, in case of cell killing, the multiplication of released bacteria into the medium [14]. For experimental conditions, add the antibiotic you wish to test at the appropriate concentration in the culture medium (see Notes 7 and 8).
2. At the end of the incubation period, wash the cells three times in PBS and collect them in sterile distilled water as explained above. Proceed to plating, cfu counting, and protein assay.

3.6 Assessment of Antibiotic Intracellular Activity

The model described here allows to monitor antibiotic activity against intracellular bacteria over time or as a function of the extracellular concentration of the antibiotic [11, 14].

1. Considering time effects, bacterial growth is often delayed inside the cells (lag phase of a few hours), so that bacterial killing by antibiotics occurs slower than in broth.

2. Considering concentration effects, performing experiments with broad ranges of extracellular concentrations (from sub-MIC values to many times the MIC) allows obtaining full concentration-response curves for fitting with sigmoid regressions (see Fig. 3).

3. Using the corresponding Hill’s equation, key pharmacological descriptors of activity can be calculated.

![Figure 3](https://example.com/fig3.png)

**Fig. 3** Concentration-effect relationship for the extracellular and intracellular activity of antibiotics, exemplified for moxifloxacin against *S. aureus* and *P. aeruginosa*. Comparison of the activity of moxifloxacin after 24-h incubation with moxifloxacin in broth (extracellular activity; open symbols) or in infected THP-1 cells (closed symbols). The ordinate shows the change in the number of cfu per mL (extracellular) or per mg cell protein (intracellular) compared to the post-phagocytosis inoculum (horizontal line at 0). The abscissa shows the antibiotic concentration expressed as the log10 of its MIC in broth. The dotted line shows the MIC value. Data are used to fit Hill equations (slope factor = 1) and derive the pertinent key pharmacodynamic parameters, namely (1) \( E_{\text{min}} \) (change in cfu for an infinitely low antibiotic concentration); (2) \( E_{\text{max}} \) (relative efficacy; maximal reduction in inoculum as extrapolated for an infinitely large concentration, in log10 cfu units compared to the original inoculum); (3) \( EC_{50} \) (relative potency; concentration causing a reduction of the inoculum halfway between \( E_{\text{min}} \) and \( E_{\text{max}} \); Cs (static concentration; concentration resulting in no apparent bacterial growth). Constructed based on data presented in [10, 11]
• The relative minimal efficacy \( E_{\text{min}}; \text{in log}_{10} \text{cfu units} \), i.e., the increase in the number of cfu for an infinitely low antibiotic concentration compared to the original post-phagocytosis inoculum.

• The relative maximal efficacy \( E_{\text{max}}; \text{in log}_{10} \text{cfu units} \), i.e., the decrease in the number of cfu for an infinitely large concentration of antibiotic.

• The relative potency \( EC_{50}; \text{in mg/L or in multiples of MIC} \), i.e., the concentration of antibiotic yielding a response half-way between \( E_{\text{min}} \) and \( E_{\text{max}} \).

• The static concentration \( C_s; \text{in mg/L or in multiple of MIC} \), i.e., the concentration of antibiotic resulting in no apparent bacterial growth compared to the original inoculum [10].

4. Two major observations have been made with this type of model (see Fig. 3).

• First, the static concentration against intracellular bacteria (i.e., the antibiotic concentration preventing bacterial growth) is in most cases close to the MIC, suggesting that the potency of the drug is not directly correlated with its accumulation inside the cells, possibly because of poor intracellular bioavailability.

• Second, the antibiotic maximal efficacy is in most cases much lower against intracellular bacteria than against extracellular bacteria, suggesting poor bacterial responsiveness to antibiotic action in the intracellular environment. The molecular reasons for this loss of maximal efficacy inside the cells remain to be established.

4 Notes

1. Protein assay can be performed without any commercial kit, using the protocol described by Lowry [23]. Reagents required are Biuret reagent (extemporaneous mixture of 100 mL 2 % Na\(_2\)CO\(_3\), 1 mL 2 % potassium sodium tartrate, 1 mL 1 % CuSO\(_4\).5H\(_2\)O), 2 N Folin-Ciocalteu reagent (diluted to 1 N), 1 N NaOH, and a standard (100 \( \mu \)g/mL bovine albumin). In brief, 0.5 mL of cell lysate (or dilution thereof), blank (medium in which cells were collected), water (solvent of standard), or standard are incubated during 30–120 min with 0.5 mL 1 N NaOH, after which 5 mL of Biuret reagent is added and incubation is continued for 10–20 min. 0.5 mL of 1 N Folin reagent is then added to each tube and absorbance is read at 660 nm after 30 min of incubation (the last step needs to be done tube by tube and with a timer;
incubation time should be strictly the same for each tube). The concentration of proteins in the sample is then calculated as \( \left( \frac{[OD_{\text{sample}} - OD_{\text{blank}}/OD_{\text{standard}} - OD_{\text{water}}]}{([\text{standard concentration}] \times \text{dilution factor})} \times 100 \, \mu g/mL \right) \).

2. Viability can be easily assessed using trypan blue exclusion test (vital colorant excluded from viable cells). To this effect, 100 \( \mu L \) of cell suspension are diluted by 900 \( \mu L \) of trypan blue reagent, incubated during 10 min at 37 \( ^\circ C \), after which the proportion of dead cells (colored in blue) is determined by cell counting using a hemocytometer. An alternative method consists in measuring the release of lactate dehydrogenase, a cytosolic enzyme, in the supernate of cell culture, which occurs upon permeabilization of the cell membrane. Lactate dehydrogenase (LDH) viability kits are commercialized. The assay can also be performed using the method of Vassault [25], which measures the consumption of NADH upon reduction of pyruvate in lactate by LDH.

In brief, 50 \( \mu L \) of culture medium or 10 \( \mu L \) of cell lysate are mixed with 2.5 mL of 0.244 mM NADH solution in Tris buffer (81.3 mM Tris/203.3 mM NaCl). 500 \( \mu L \) of 9.76 mM natrium pyruvate (prepared in the same buffer) are added and NADH consumption is followed by measuring optical density at 339 nm immediately and then every minute during 5 min. Cell mortality is evaluated by the ratio between LDH activity in the supernate (estimated by \([OD_{0\text{min}} - OD_{5\text{min}}]/\mu L \) of medium \( \times \) total volume of the culture medium) and the total activity in the culture (sum of total activity in supernate and total activity in cell lysate estimated as \([OD_{0\text{min}} - OD_{5\text{min}}]/\mu L \) of medium \( \times \) total volume of cell lysate).

3. When using obligatory or facultative intracellular organisms which are specifically adapted to use the serum complement to increase phagocytosis, opsonization causes massive infection of the cells [28]. Pre-opsonization is therefore not systematically required [27] and, alternatively, culture medium could be supplemented with decomplemented serum or calf serum (heated for 30 min at 56 \( ^\circ C \); [29]) to reduce phagocytosis in order to reach post-phagocytosis inocula compatible with maintenance of cell viability for 24 h.

4. The number of eukaryotic cells to use depends on the virulence of the bacterial strain. For cytotoxic bacterial strains or species, use a higher eukaryotic cell number in order to keep enough cells after phagocytosis, as some killing may occur during this step [11].
5. A limitation of this assay is that the strain has to be susceptible to gentamicin. This antibiotic is selected for the elimination of non-phagocytosed bacteria because it is rapidly bactericidal while at the same time entering only very slowly inside eukaryotic cells. It is therefore important to test for the susceptibility of the bacterial strain to gentamicin (MIC determination) before starting the experiment. Use of lysostaphin as a lytic agent for extracellular bacteria is also proposed in the literature but we showed that it enters inside the cells and may thus affect intracellular viability [26].

6. Depending on the virulence of the strain and its capacity to multiply intracellularly, it is important to check in parallel for the viability of the cells at the end of the phagocytosis period as well as at the end of the experiment. To this effect, a viability assay (trypan blue exclusion assay; lactate dehydrogenase release assay) should be run in parallel as described in Note 2 and the post-phagocytosis inoculum should be selected so as to guarantee cell viability.

7. Antibiotics or antibacterial agents (or even their solvent if not soluble in water) may also be toxic to eukaryotic cells. Again, it is important to check for cell viability in the presence of the tested agent for correct interpretation of the data. Massive cell death induced by the antibacterial agent can trigger bacterial release into the culture medium and therefore lead to the evaluation of the activity of the tested agent against extracellular bacteria rather than against intracellular bacteria [30].

8. For highly bactericidal antibiotics, check that the amount of carried-over antibiotic does not impair bacterial growth on the plates [26]. This can be done by comparing the number of cfu on plates from lysates pre-exposed or not to 12.5 mg/L charcoal (adsorbing residual antibiotic) during 10 min [16].

Acknowledgments

Intracellular infection models have been developed thanks to the financial support of the Belgian Fonds National de la Recherche Scientifique, the Interuniversity Attraction Poles initiated by the Belgian Science Policy Office, and the Brussels and Walloon Regions.

References


