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A Combined Pharmacodynamic Quantitative and Qualitative Model
Reveals the Potent Activity of Daptomycin and Delafloxacin against
Staphylococcus aureus Biofilms

Julia Bauer,* Wafi Siala, Paul M. Tulkens, Françoise Van Bambeke

Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium

Biofilms are associated with persistence of Staphylococcus aureus infections and therapeutic failures. Our aim was to set up a
pharmacodynamic model comparing antibiotic activities against biofilms and examining in parallel their effects on viability and
biofilm mass. Biofilms of S. aureus ATCC 25923 (methicillin-sensitive S. aureus [MSSA]) or ATCC 33591 (methicillin-resistant
S. aureus [MRSA]) were obtained by culture in 96-well plates for 6 h/24 h. Antibiotic activities were assessed after 24/48 h of ex-
posure to concentrations ranging from 0.5 to 512 times the MIC. Biofilm mass and bacterial viability were quantified using crys-
tal violet and the redox indicator resazurin. Biofilms stained with Live/Dead probes were observed by using confocal micros-
copy. Concentration-effect curves fitted sigmoidal regressions, with a 50% reduction toward both matrix and viability obtained
at sub-MIC or low multiples of MICs against young biofilms for all antibiotics tested. Against mature biofilms, maximal effica-
cies and potencies were reduced, with none of the antibiotics being able to completely destroy the matrix. Delafloxacin and dap-
tomycin were the most potent, reducing viability by more than 50% at clinically achievable concentrations against both strains,
as well as reducing biofilm depth, as observed in confocal microscopy. Rifampin, tigecycline, and moxifloxacin were effective
against mature MRSA biofilms, while oxacillin demonstrated activity against MSSA. Fusidic acid, vancomycin, and linezolid
were less potent overall. Antibiotic activity depends on biofilm maturity and bacterial strain. The pharmacodynamic model de-
veloped allows ranking of antibiotics with respect to efficacy and potency at clinically achievable concentrations and highlights
the potential utility of daptomycin and delafloxacin for the treatment of biofilm-related infections.

Staphylococcus aureus is a major human pathogen, implicated in
both hospital- and community-acquired infections. In addi-

tion to the increase in antibiotic resistance that often limits ther-
apeutic options, pathogenic bacteria can adapt and survive in spe-
cific microenvironments that are also associated with therapeutic
failure and recurrence or persistence of infection. Among them,
biofilms play a significant role in persistent infections formed on
the surface of implanted medical devices and in deep tissues (1–3).
Biofilms are complex aggregates of bacteria encased in an extra-
cellular matrix made of polymeric substances like DNA, polysac-
charides, teichoic acids, and proteins (4). Biofilms protect bacteria
from host defense and antibiotics, allowing them to remain dor-
mant for long periods in the host, and represent a reservoir for
resistance development and for bacterial dissemination within the
body. Biofilm formation and growth are finely regulated and are
accompanied by metabolic changes that could also affect bacterial
response to antibiotics (5).

Antibiotic activity against staphylococcal biofilms has been
studied in a large variety of in vitro or animal models in an attempt
to identify the best therapeutic options. These studies typically
evaluate a limited set of drugs in parallel (6–15) and mainly focus
on their effect on viability (6–17). Some reports have measured
effects on the biofilm matrix, but these are limited to specific an-
tibiotic concentrations (18, 19). Thus, only few studies evaluate
antibiotics on a pharmacodynamic basis and compare them in a
single model in order to provide useful information regarding
their respective interest for treating biofilm-related infections. In
this work, we have established a model that allows the quantifica-
tion of antibiotic potency and efficacy for both bacterial viability
and matrix within staphylococcal biofilms, while at the same time
visualizing these effects throughout the 3-dimensional structure

of the biofilm. This approach has generated coherent and comple-
mentary pieces of information that may help rationalize antibiotic
selection for biofilm-associated infections.

MATERIALS AND METHODS

Bacterial strains and biofilm culture conditions. S. aureus ATCC 25923
(methicillin-sensitive S. aureus [MSSA]) and ATCC 33591 (methicillin-
resistant S. aureus [MRSA]) were used. Biofilms were grown in 96-well
plates (European catalog number 734-2327; VWR, Radnor, PA;) with a
total volume of 200 �l of medium per well and a starting inoculum ap-
proximately equal to 107 CFU/ml (optical density at 620 nm [OD620] of
0.005). Biofilm production is described as highly dependent on the tem-
perature of the culture medium (20, 21). Preliminary experiments showed
that a strong biofilm was obtained at 30°C in Bacto tryptic soy broth (TSB;
Becton, Dickinson, Franklin Lakes, NJ) supplemented with 0.25% glucose
and 0.5% NaCl for the two strains investigated here. Growth was allowed
for 6 h or 24 h to obtain young and mature biofilms, respectively.
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Assessment of biofilm production and of bacterial viability within
the biofilm. Biofilm production was evaluated by measuring the absor-
bance of crystal violet, a cationic dye which stains nonspecifically nega-
tively charged biofilm constituents based on ionic interactions (22). Via-
bility was determined using the blue-colored phenoxazin dye resazurin,
which is reduced by viable bacteria to the pink, fluorescent compound
resorufin (23, 24). In brief, at the end of the incubation period, the me-
dium was removed and wells were washed twice with 250 �l of phosphate-
buffered saline (PBS). For the crystal violet assay, biofilms were fixed by
heat at 60°C for about 1 h and stained by 15 min of incubation at room
temperature with 150 �l of a 2.3% crystal violet solution prepared in 20%
ethanol (Sigma-Aldrich, St. Louis, MO). We checked in preliminary ex-
periments that this volume of crystal violet solution was sufficient to fully
cover the biofilm. After elimination of the excess of crystal violet under
running water, the dye fixed to the biofilm was resolubilized by the addi-
tion of 200 �l of 33% glacial acetic acid and incubation at room temper-
ature for 1 h without shaking. Crystal violet absorbance was measured at
570 nm using a microplate spectrophotometer (VersAmax tunable micro-
plate reader; Molecular Devices, Sunnyvale, CA). For the resazurin assay,
biofilms were incubated with 10 �g/ml resazurin (Sigma-Aldrich) in TSB
for 30 min at room temperature in the dark. Resorufin fluorescence was
measured at a wavelength of 590 nm, with an excitation wavelength of 550
nm (SPECTRAmax spectrofluorometer; Molecular Devices).

Antibiotic susceptibility testing and activity against bacteria grow-
ing in biofilms. MICs were determined by microdilution according to
CLSI recommendations (25). Antibiotic activity was also evaluated
against 6-h and 24-h biofilms. When the desired maturity was reached,
the biofilm culture medium was removed and immediately replaced by
the same medium (control) or medium containing antibiotics at in-
creasing concentrations (0.5- to 512-fold the MICs in broth). Biofilms
were reincubated for 24 h (6-h biofilms) or 48 h (24-h biofilms) at
30°C, and then crystal violet absorbance or resorufin fluorescence was
measured as described above. To correct for growth of the biofilm
during incubation, all data are expressed as percentages of the results
for the matching control.

Confocal microscopy. The BacLight Live/Dead bacterial viability kit
(L-7007; Molecular Probes, Eugene, OR) was used to stain bacteria in
biofilms grown on glass coverslips. The kit contains (i) Syto9, a mem-
brane-permeable fluorophore staining both living and dead cells in green
by intercalation in their DNA, and (ii) propidium iodide, which only
enters damaged cells, causing an attenuation of the Syto9 signal in dead

cells only and making them appear red when a dual-emission filter is used
(26, 27). The stain was prepared by dilution of 4 �l of component A (1.67
mM Syto9 plus 1.67 mM propidium iodide) and 6 �l of component B
(1.67 mM syto9 plus 18.3 mM propidium iodide) into 1 ml of distilled
water. Biofilms were washed with distilled water, and then coverslips were
transferred into a fresh well and incubated for 30 min at room tempera-
ture in the dark with 200 �l of staining solution and 100 �l of distilled
water, washed again, and directly observed with a 63� lens objective by
confocal laser scanning microscopy (CSLM) in a Cell Observer SD micro-
scope (Zeiss) combined with a CSU-X1 spinning disk (Yokogawa) and
controlled by AxioVision software (AxioVs40, version 4.8.2.0), with exci-
tation at 488 nm and emission detected using a dual-band emission filter
(500 to 550 nm/598 to 660 nm). All settings (camera exposure time and
CSU disk speed) were determined in a preliminary experiment and main-
tained constant throughout. Antibiotic effects were evaluated by deter-
mining the fluorescence ratio at 500 nm and 620 nm (after subtraction of
background signals) in different focus planes within the depth of the bio-
film (z-stack of 1 �m). This ratio being proportional to the number of
viable/nonviable cells (BacLight Live/Dead bacterial viability kit; Molec-
ular Probes, Inc.), viability was then calculated from a titration curve
established as described in Figure S1 in the supplemental material.

Data analyses and statistical analyses. Curve-fitting analyses were
made using GraphPad Prism version 4.03 (GraphPad Software, San Di-
ego, CA, USA). Data were used to fit mono- or biphasic sigmoidal regres-
sions. This allowed us to calculate maximal efficacy (Emax; maximal re-
duction in biofilm mass production or in viable bacteria extrapolated for
an infinitely large concentration) and relative potencies (concentrations
allowing 25, 50, or 75% reduction of the parameter investigated [C25, C50,
or C75, respectively]). Statistical analyses were made with GraphPad In-
stat, version 3.06 (GraphPad Software).

Source of antibiotics. The following antibiotics were obtained as mi-
crobiological standards from their respective manufacturers: daptomycin
from Novartis Pharma AG (Basel, Switzerland), moxifloxacin from Bayer
HealthCare (Leverkusen, Germany), fusidic acid from Cempra Pharma-
ceuticals (Chapel Hill, NC), and delafloxacin from Rib-X Pharmaceuticals
(New Haven, CT). Additional antibiotics were obtained as the brand-
name commercial products available for human use in Belgium (vanco-
mycin as Vancocin [GlaxoSmithKline s.a./n.v., Genval, Belgium], rifam-
pin as Rifadine [Merrell Dow Pharmaceuticals, Inc., Strasbourg, France],
and linezolid as Zyvoxid [Pfizer s.a./n.v., Brussels, Belgium]).

FIG 1 Setting up the resazurin assay with MSSA ATCC 25923. (Left) Resorufin fluorescence signal recorded after 10, 30, or 60 min of incubation of planktonic
bacteria at increasing inocula (optical densities) with 10 �g/ml resazurin. (Right) Correlation between resorufin fluorescence signal after 30 min of incubation
of planktonic cultures with 10 �g/ml resazurin and bacterial inoculum as evaluated by the number of CFU or the optical density of the suspension. Data are means
� standard deviations [SD] of 2 independent experiments performed in triplicates.
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RESULTS
Establishing culture conditions for resorufin assay. As a prelim-
inary step in this work, we determined the optimal conditions for
assaying bacterial viability using resazurin reduction as a marker.
To this effect, we examined the influence of incubation time with
resazurin on resorufin fluorescence for planktonic cultures of
MSSA ATCC 25923 at increasing OD620 values. A linear relation-
ship was observed over a wide range of OD620 values for an incu-
bation time of 30 min (Fig. 1, left). For shorter or longer incuba-
tion times, the relationship was not linear, which could be
interpreted as denoting (i) an inadequate metabolization of resaz-
urin with small inocula after 10 min and (ii) partial exhaustion of
the substrate for large inocula when the incubation time was pro-
longed to 60 min. The relationship between the fluorescence sig-
nal after 30 min of incubation and the bacterial load was examined
by measuring the OD620 of the suspension and counting CFUs. A
linear correlation with both parameters was observed in the range
of fluorescence signals corresponding to those measured in bio-
films in further experiments (Fig. 1, right). Similar data were ob-
tained for the MRSA strain (not shown).

Characterization of the biofilm model. Figure 2 (left) shows
the increase with time of crystal violet absorbance (as a marker for
biofilm matrix production) and of resorufin fluorescence (as a
marker for bacterial viability within the biofilm), with values ex-
pressed as the percentage of the signal measured at 6 h (time
needed to obtain a tiny but visible biofilm in the wells). The crystal
violet signal increased as much as 15- to 20-fold from 6 h to 24 to
30 h, thereafter reaching a plateau value, while the resorufin signal
increased 4.5- to 6-fold over the same period of time, with no
further increase upon prolonged incubation. On this basis, we
selected 6 h and 24 h as the incubation times for studying antibi-
otic activity on young and mature biofilms, respectively. Figure 2
(right) illustrates that for 6 independent experiments, viability-
and matrix-associated signals remained almost within the 95%
confidence interval, indicating the repeatability of the model.
Similar data were obtained for the MRSA strain (not shown).

Antibiotic intrinsic activity (MICs). Table 1 shows the MICs

of the antibiotics studied against MSSA ATCC 25923 and MRSA
ATCC 33591. The strains were susceptible to all antibiotics (ex-
cept to oxacillin for the MRSA). Rifampin, moxifloxacin, and de-
lafloxacin showed the lowest MIC values.

Antibiotic activities against 6-h S. aureus biofilms. Figure 3
(see also Fig. S2 in the supplemental material for additional drugs)
shows the activities of a series of antistaphylococcal antibiotics
against MSSA ATCC 25923 and MRSA ATCC 33591 allowed to
form biofilms for 6 h and then exposed to antibiotics for 24 h. All
antibiotics displayed concentration-dependent effects on both
bacterial viability within the biofilm and biofilm mass. These ef-
fects developed in parallel, except for linezolid against the MSSA
strain and moxifloxacin against the MRSA strain, which required
higher concentrations to act upon biofilm mass. Examination of
the corresponding pharmacodynamic parameters (Table 2) re-
veals that all drugs were able to markedly (�75%) reduce viability
(except for oxacillin toward the MRSA strain). This effect was
generally obtained at low multiples of their MIC or even at sub-
MIC concentrations for fusidic acid, delafloxacin, oxacillin, and
rifampin against the MSSA strain and for rifampin against the
MRSA strain. Moxifloxacin was much less potent against the

FIG 2 Characterization of the biofilm model with MSSA ATCC 25923. (Left) Evolution over time of the crystal violet absorbance (as a marker of biofilm
production) and of resorufin fluorescence (as a marker of bacterial viability) for an initial inoculum with an OD620 of 0.005 incubated at 30°C. Data are expressed
as percentages of the values measured after 6 h of culture and are the means � SD of 2 independent experiments, each performed on 8 wells. (Right) Resorufin
fluorescence signal (RF; left) and crystal violet absorbance (CV; right) measured for 6-h and 24-h biofilms in 6 independent experiments. Each symbol
corresponds to the mean of the results for 8 wells in a single experiment; the horizontal lines and whiskers show the means � 95% confidence intervals.

TABLE 1 MICs of antibiotics compared to the corresponding human
Cmax

Antibiotic
Human Cmax in mg/liter
(reference)

MIC (mg/liter) for:

MSSA ATCC
25923

MRSA ATCC
33591

Vancomycin 50 (28) 1 1
Fusidic acid 35 (28) 0.25 0.25
Moxifloxacin 4 (28) 0.032 0.032
Delafloxacin 10 (29) 0.004 0.004
Daptomycin 94 (28) 0.5 0.5
Oxacillin 63 (28) 0.125 32–64
Rifampin 18 (28) 0.032 0.032
Linezolid 21 (30) 1 1
Tigecycline 1.5 (28) 0.125 0.5
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MRSA strain in spite of its low MIC. Considering their effects on
the matrix, linezolid was poorly active against the MSSA strain,
while moxifloxacin, daptomycin, and oxacillin showed reduced
relative potencies against the MRSA strain.

Antibiotic activity against 24-h S. aureus biofilms. Figure 4
(see also Figure S3 in the supplemental material for additional
antibiotics) and Table 3 show the activities and the corresponding
pharmacodynamic parameters for the same antibiotics against
24-h biofilms exposed for 48 h to the drugs under study. Consid-
ering effects on viability first, all drugs were much less potent and
also less efficacious (except for daptomycin, which remained ca-
pable of sterilizing the MSSA biofilm). At clinically achievable
concentrations, daptomycin and oxacillin showed the highest ef-
ficacies (�75% effect) against MSSA biofilms, followed by dela-
floxacin (�50% effect), fusidic acid, vancomycin, and rifampin
(30 to 40%), linezolid and moxifloxacin (�30%), and tigecycline
(�10%). Against MRSA biofilms, all active drugs were more po-
tent than against MSSA, with 50% reduction in viability observed
at sub-MIC concentrations for delafloxacin and rifampin at low
multiples of the MIC for daptomycin and tigecycline and at still
clinically relevant concentrations for moxifloxacin. Vancomycin,
fusidic acid, and linezolid achieved lower effects at their human
Cmax (20 to 40% reduction versus the results for the control). The
ability of these drugs to reduce biofilm mass was not impressive
overall, with only daptomycin and, to some extent, fluoroquino-
lones being able to act upon the matrix of the MSSA strain and
daptomycin, delafloxacin, and rifampin also showing some activ-
ity on the MRSA biofilm matrix. In many cases, an increase in the
crystal violet signal was observed (values set at 120% in the
graphs).

Observation of 24-h S. aureus biofilms by confocal micros-
copy. Biofilms formed on glass coverslips were exposed to selected
antibiotics at 32 times their MICs and observed after staining with
Live/Dead fluorophores. Figure 5 shows typical 3-dimensional
pictures obtained for MSSA and MRSA biofilms, respectively, to-
gether with quantitative analyses of the pixels throughout the
depth of the biofilm structure. MSSA biofilms were deeper than
MRSA biofilms, but viability was similar at equivalent depths.
Against both types of biofilms, only delafloxacin and daptomycin
significantly decreased bacterial viability at any depth (from
�10% near the surface to �1% at depths of �10 �m [or even 5
�m for daptomycin against MSSA]). These two drugs were fur-
ther analyzed at lower multiples of their MICs (Fig. 6; see also the
corresponding videos in the supplemental material), with dela-
floxacin appearing more effective than daptomycin at 8 or 16
times the MIC against the MRSA strain.

DISCUSSION

This study is the first, to our knowledge, to examine in a systematic
way the activity of antibiotics (representative of the main anti-
staphylococcal classes) against S. aureus biofilms, considering
both biofilm mass and bacterial viability and using complemen-

FIG 3 Concentration-response activities of antibiotics against 6-h biofilms of
MSSA ATCC 25923 (left) or MRSA ATCC 33591 (right). The 6-h biofilms
were incubated with increasing concentrations of antibiotics (shown on

the x axis) for 24 h. The ordinate shows the change in resorufin fluorescence
(RF; filled symbols and thick lines) or in crystal violet absorbance (CV; open
symbols and thin lines) as a percentage of the control value (no antibiotic
present; CT). All values are the means � SD of the results for 8 wells (when not
visible, the SD bars are smaller than the size of the symbols). The pertinent
pharmacological descriptors of the curves are presented in Table 2.
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tary quantitative and qualitative approaches. Our methodology
has been validated with respect to (i) the reproducibility of the
model and (ii) the linearity of the response for the technique used
to measure the metabolic activity of bacteria within the biofilm.
Specifically, we showed that the time of incubation with resazurin
is critical to obtain a linear relationship between the fluorescent
signal and the amount of viable bacteria. We also demonstrated
that about 6 h of incubation was sufficient to obtain reproducible
attachment and matrix production and that 24 h of incubation are
sufficient to generate a stable biofilm with S. aureus, no major
change in the amount of matrix formed being observed upon
prolongation of the incubation time. Similar incubation times
were also used in many other studies and considered to generate,
respectively, a nascent biofilm related to attachment to the sup-
port (31–33) and a mature biofilm (6, 15, 34–37). Of note, in vitro
biofilm formation appears highly dependent on the support (38,
39) and on the medium (40, 41) used, making direct comparisons
between models difficult. In particular, we show here that antibi-
otics seem more active when a biofilm is grown on a glass support
(as used for confocal microscopy experiments) than in polypro-
pylene 96-well plates. This is coherent with data in the literature
suggesting that S. aureus biofilm formation is favored on plastic
surfaces (42, 43). Nevertheless, microtiter plate-based models
similar to the one used here have demonstrated good correlation
with respect to biofilm formation with subcutaneous foreign body
infections (38), underlining the potential clinical relevance of the
model we developed.

In addition, our data are consistent with previous studies eval-
uating these methods for quantifying biofilm formation or drug
effects (14, 15, 17, 19, 23, 37). However, in contrast to previous
studies, our approach allows the characterization of antibiotic ac-
tivity from a pharmacodynamic perspective. As such, our data
provide additional information compared to the minimal biofilm
eradication concentration (MBEC) (34), which is the parameter
most commonly used to quantify antibiotic effects on biofilms (9,
11, 14, 15, 17, 35, 36).

Considering first our quantitative studies as a whole, all con-
centration-effect curves follow sigmoid regressions, allowing the
comparison of three main pharmacodynamic determinants of an-
tibiotic activity: maximal efficacy, relative potency, and steepness
of the dose-response curve. Interestingly enough, antibiotic activ-
ity against young biofilms was indistinguishable when considering
biofilm mass or viability, with 50% effect reached at reasonably
low concentrations compared to the MICs in most cases, suggest-
ing that antibiotic potency is not overly affected in this model.

However, there is a clear influence of biofilm age on antibiotic
activity, with loss of efficacy and of potency occurring as the bio-
film matures. The 6-h biofilm model represents a situation where
bacteria adhere to their support and start producing matrix, while
the 24-h model corresponds to a mature biofilm in which matrix

FIG 4 Concentration-response activities of antibiotics against 24-h biofilms
of MSSA ATCC 25923 (left) or MRSA ATCC 33591 (right). The 24-h biofilms
were incubated with increasing concentrations of antibiotics (shown on the x
axis) for 48 h. The ordinate shows the change in resorufin fluorescence (RF;
filled symbols and thick lines) or in crystal violet absorbance (CV; open

symbols and thin lines) as a percentage of the control value (no antibiotic
present; CT). Values that are above the control values were set to a value of
120% (highlighted by the gray zone on the graphs). All values are the means �
SD of the results for 8 wells and three independent determinations (when not
visible, the SD bars are smaller than the size of the symbols). The pertinent
pharmacological descriptors of the curves are presented in Table 3. The vertical
dotted lines point to the human Cmax reached in the serum of patients receiv-
ing conventional dosages. The concentrations in boxes correspond to those
used for confocal microscopy experiments.
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FIG 5 (Left and middle) Three-dimensional images from confocal laser scanning microscopy of 24-h biofilms of MSSA ATCC 25923 (left) and MRSA ATCC
33591 (middle) under control conditions or after exposure to selected antibiotics at 32 times their MICs for 48 h. Biofilms were stained with Syto9 (green; viable
cells) and propidium iodide (red; dead cells). All pictures were taken in the same orientation. The depths of the biofilms are shown above. (Right) Quantitative
analysis of images, as calculated from the Syto9/propidium iodide fluorescence ratios, presented as the percentages of living cells through the depths of the
biofilms (expressed as the percentage of the remaining biofilm under each condition). Statistical analysis was performed using one-way analysis of variance with
Dunnett’s post hoc test versus control: P � 0.01 for delafloxacin and daptomycin; P � 0.05 for moxifloxacin (MSSA); P � 0.05 for vancomycin and fusidic acid
(both strains) and moxifloxacin (MRSA).
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production has reached a maximum. We see that the reduction in
antibiotic activity with biofilm maturation seems more important
with respect to biofilm mass than to bacterial viability. This is
consistent with the fact that antibacterial agents act on essential
bacterial targets and not upon biofilm matrix. Reductions in bio-
film mass are thus likely consecutive to bacterial growth inhibition
or killing during the 48 h of exposure to antibiotics, as previously
demonstrated for daptomycin or fluoroquinolones (12, 13). In-
deed, the antibiotics showing activity in our model also decrease
biofilm depth (as observed by confocal microscopy). In contrast,

an increase in biofilm mass is observed in many cases where anti-
biotics had minimal effects on viability and were poorly active.
This has been previously observed by others (44–46), essentially
upon exposure to low concentrations, and is suggested to result
from an induction of a stress response or of the expression of
virulence genes (46, 47). It is also interesting to note that antibiotic
effects on viability are best seen at the surface of the biofilm or in
the deepest zones, which may correspond, respectively, to the re-
gions that are the most accessible to antibiotics (48) or to those
where bacterial viability is already compromised, as suggested by

FIG 6 (Left) Three-dimensional images from confocal laser scanning microscopy of 24-h biofilms of MSSA ATCC 25923 (top) or MRSA ATCC 33591 (bottom)
under control conditions or after exposure to delafloxacin or daptomycin at 8 and 16 times the respective MIC for 48 h. Biofilms were stained with Syto9 (green;
viable cells) and propidium iodide (red; dead cells). Videos showing the 3-dimensional images in various orientations are also available (see the supplemental
material). (Right) Percentages of living cells through the depths of the biofilms as calculated from the Syto9/propidium iodide fluorescence ratio (expressed as
the percentage of the remaining biofilm under each condition). Statistical analysis was performed using one-way analysis of variance with Tukey post hoc test: P �
0.001 for delafloxacin (DFX) versus daptomycin (DAP) at 8 times the MIC against MRSA, and for daptomycin, at 8 times the MIC versus 16 times the MIC against
MRSA.
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control images. A recent study suggests, however, that lack of ac-
tivity against biofilms is due not to insufficient diffusion but,
rather, to poor bioavailability, with the drug possibly interacting
with matrix constituents (49), which are supposedly more abun-
dant where bacteria are metabolically active.

Compared to what was observed previously in experiments of
similar design performed against extracellular or intracellular S.
aureus (50), the steepness of the dose-response curve (Hill slope)
is in several cases much higher than �1 (more-negative values),
suggesting that response to the drugs can be amplified as soon as
biofilm starts to be damaged. Also noteworthy, the concentration-
effect relationships at 24 h for fluoroquinolones were fitted best
using double sigmoid curves when considering the effect of dela-
floxacin against the MSSA strain and that of moxifloxacin against
the MRSA strain. Although the reason for this specific behavior is
still unknown, it was previously observed when examining the
intracellular activity of delafloxacin against the same MSSA strain
(51) and attributed to its dual targeting of DNA gyrase and topo-
isomerase IV.

Beside biofilm maturity, the bacterial strain also clearly influ-
ences antibiotic activity. In spite of the fact that the control signals
for viability and biofilm mass were similar for the two strains
investigated and that the MICs for most antibiotics were similar
against both strains, we see that antibiotic activity, at equipotent
concentrations, is usually higher against the MRSA strain. Al-
though we currently have no simple explanation for this observa-
tion with these particular strains, this may well reflect differences
in the nature and/or the biophysical properties of the biofilm pro-
duced, ultimately affecting antibiotic bioavailability and/or ex-
pression of activity. The mechanisms of biofilm formation indeed
depend on different regulatory pathways in MSSA and MRSA (52,
53), with specific determinants like the agr group, polysaccharide
intercellular adhesin production, and spa types being more deter-
minant for the capacity to produce slime than the expression of
microbial surface components recognizing adhesive matrix mol-
ecules (MSCRAMM) (4, 54, 55). The nature of the biofilm matrix
can differ among strains as well, with some producing a polysac-
charide-based matrix under the control of the ica locus and others
producing a protein-based matrix (4). A strong correlation has
been observed between ica operon transcription and polysaccha-
ride production in MSSA strains but not in MRSA strains (56).

Examining, then, antibiotic activity from a clinical perspective,
we show that most of the current antistaphylococcal agents are
poorly effective and weakly potent against mature biofilms, pos-
sibly rationalizing therapeutic failures (57). The drugs that prove
the most effective to kill bacteria in this model are fusidic acid,
fluoroquinolones, and daptomycin, while the most potent are de-
lafloxacin and daptomycin, making the two latter molecules po-
tentially useful therapeutic options. Daptomycin activity against
biofilms has been documented in several in vitro and in vivo mod-
els (6, 8–10, 12, 16). It is globally considered more active than
fluoroquinolones (6, 9) (in particular, moxifloxacin [8, 13]), de-
spite the fact that both drugs show similar MICs and are highly
bactericidal against planktonic bacteria. Accordingly, daptomycin
has been considered for the treatment of infections possibly in-
volving biofilms, such as catheter-related bloodstream infections
(58), right-side endocarditis (59, 60), or cardiac implantable elec-
tronic device-related infective endocarditis (61). Interestingly, we
show here that delafloxacin is also clearly more effective than
moxifloxacin at equipotent concentrations, suggesting that fac-

tors other than higher intrinsic activity (low MIC value) play a role
in this context. A possible explanation could reside in a local en-
vironment favorable to the expression of delafloxacin activity
within the biofilm. We know, for example, that delafloxacin, in
contrast to daptomycin, gains potency in acidic environments
(51), which may be the case within biofilms, as suggested from
studies on biofilms of Pseudomonas or streptococci (62, 63). De-
lafloxacin even seems to be more active than daptomycin against
the MRSA strain at equipotent concentrations, suggesting that
further comparisons of the activities of these two drugs against
biofilms from recent clinical isolates should be conducted.

Thus, taken together, the experimental approach proposed
here has generated a comprehensive analysis of the pharmacody-
namic parameters defining antibiotic activity against biofilms of S.
aureus. It has highlighted the importance of the maturity of the
biofilm and of the strain involved as determinants of antibiotic
activity, suggesting the importance of better defining biofilm bio-
physical or chemical properties influencing antibiotic action.
Thus, the apparent resistance to antibiotics of bacteria growing in
biofilms is probably multifactorial, with a combination of mech-
anisms that are both innate (decreases in antibiotic access, oxygen,
and nutrient availability and lower metabolic activity) or induced
by antibiotic exposure (like stress response and/or a switch to a
persister phenotype) (64, 65). From a clinical point of view, this
study has also allowed the ranking of antistaphylococcal agents in
regard to their respective interest for treating biofilm-related in-
fections, paving the way for the design of pertinent in vivo or
clinical studies.
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Figure S1 
 
Relationship between the green/red fluorescence ratio of LIVE/DEAD staining of bacterial 

suspensions as observed in confocal laser scanning microscopy (CLSM; upper panel) and 

the percentage of live bacteria in the suspension (0-10-50-90-100 % in the upper panel 

pictures).   

Samples were prepared by adding 500µl of Tryptic Soy Broth supplemented with 0.25% 

glucose and 0.5% NaCl to an established biofilm, which was immediately sonicated (2 times 

during 15 s; Branson 3510 ultrasonic cleaner). The bacterial suspension was then placed in 

a sterile tube, centrifuged (10min, 10000g), washed and resuspended in 250µl phosphate 

buffered saline (PBS; live cells) or PBS containing 10mg/ml cetrimide (dead cells), and 

incubated for 2h at room temperature with shaking. Live and dead cells were mixed at 

different ratios in a final volume of 100µl. Samples were centrifuged (10min, 10000g) and 

pellets incubated during 30 min at room temperature in the dark with 200 µl of LIVE/DEAD 

staining solution. Samples were centrifuged again, resuspended with 20µl of LIVE/DEAD 

staining solution and observed in CLSM. The fluorescence emission ratio of each sample 

was then calculated to establish a titration curve in function of the percentage of live/dead 

cells in the sample (slope: 0.082; Y intercept: 0.214; R2: 0.994). 
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Figure S2 
 

Concentration-response activity 

of antibiotics against 6h biofilms 

of MSSA ATCC25923 (left) or 

MRSA ATCC33591 (right).  6-h 

biofilms were incubated with 

increasing concentrations of 

antibiotics for 24 h.  The ordinate 

shows the change in resorufin 

fluorescence (filled symbols and 

thick lines) or in crystal violet 

absorbance (open symbols and 

thin lines) in percentage of the 

control value (no antibiotic 

present).  All values are means ± 

standard deviations (SD) of 8 

wells (when not visible, the SD 

bars are smaller than the size of 

the symbols).  The pertinent 

pharmacological descriptors of 

the curves are presented in Table 

2. 
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Figure S3  
Concentration-response 

activity of antibiotics against 

24-h biofilms of MSSA 

ATCC25923 (left) or MRSA 

ATCC33591 (right).  24-h 

biofilms were incubated with 

increasing concentrations of 

antibiotics for 48 h.  The 

ordinate shows the change in 

resorufin fluorescence (filled 

symbols and thick lines) or in 

crystal violet absorbance 

(open symbols and thin lines) 

in percentage of the control 

value (no antibiotic present).  

Values that are above controls 

have been set to a value of 

120 % (highlighted by the grey 

zone on the graphs).  All 

values are means ± standard 

deviations (SD) of 8 wells 

three independent 

determinations (when not 

visible, the SD bars are 

smaller than the size of the 

symbols).  The pertinent 

pharmacological descriptors 

of the curves are presented in 

Table 3.  The vertical dotted 

lines point to the human Cmax 

reached in the serum of 

patients receiving 

conventional dosages.  
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