Asian PK/PD Educational Workshop

PK/PD and resistance or How shall we tackle with the future...

Why would PK/PD be important for the prevention of resistance ?

- rate and intensity of the bactericidal effects
- minimizing the potential for acquisition and/or emergence of mechanisms of resistance
- dealing with populations of decreased susceptibility

Dead bacteria never get resistant How you kill

might be important ...

Creating a a safety margin...

Why would PK/PD be important for the prevention of resistance ?

- rate and intensity of the bactericidal effects
- minimizing the potential for acquisition and/or emergence of mechanisms of resistance
- dealing with populations of decreased susceptibility

PK/PD and resistance : importance of the <u>rate</u> of bactericidal effect

less time for the bacteria

- to acquire mechanisms of resistance
- to build (or let the host build) barriers that will impair antibiotic access to its target
- better cooperation with the mechanism of resistance of the host

Resistance and 24h AUC/MIC in vivo ...

The 1993 study of Forrest *et al.* shows that a 24h AUC/MIC ratio for ciprofloxacin causes a slow clearance of bacteria

A 1998 study by the same group (Thomas JK, et al., AAC 42:521–7) shows that the risk of getting resistant is related to a 24h AUC/MIC ratio of < 100

Resistance and 24h AUC / MIC in vitro

Resistance of *S. aureus* 201 to three quinolones related to AUC₂₄/MIC

A simple application of Darwin's concepts ...

A simple application of Darwin's concepts ...

A simple application of Darwin's concepts ...

Why would PK/PD be important for the prevention of resistance ?

- rate and intensity of the bactericidal effects
- minimizing the potential for acquisition and/or emergence of mechanisms of resistance

How you kill might be important ...

 dealing with populations of decreased susceptibility The bacterial efflux pumps may defeat a good PK ...

- by decreasing the intrabacterial concentration of the antibiotic and resulting in subinbitory concentrations and thereby favouring the possibility of mutations or acquisition of mechanims of resistance
- by allowing the development of multiple resistance

A certain serum AUC and a certain serum peak will determine the drug concentration at the target level which may prevent the selection of first and second mutation resistants

Gyrase/ Topoisomerase

Efflux and selection of resistance to FQ

Efflux and selection of resistance to FQ

Efflux pumps will reduce the concentration at the level of the target and thereby favor the selection of target mutants!

Efflux and selection of resistance

Frequency of Levofloxacin-resistant mutants in Pseudomonas aeruginosa

Pump status	LVX MIC	Frequency of LVX- resistant mutants		
WT	0.25	2 × 10 ⁷ - 4 × 10 ⁷		
Wild P. aeruginosa show both a relatively high MIC and a high frequency of resistant mutants				

Lomovskaya *et al,* AAC (1999) 43:1340-1346

Efflux and selection of resistance

Frequency of Levofloxacin-resistant mutants in *Pseudomonas aeruginosa* if deleting the efflux pump operons

Pump status	LVX MIC	Frequency of LVX- resistant mutants		
WT	0.25	2 × 10 ⁷ - 4 × 10 ⁷		
Δ mexAB-oprM	0.015	←		
Δ mexCD-oprJ	0.25			
Δ mexEF-oprN	0.25			
Δ mexAB-oprM; Δ mexEF-oprN	0.015	←		
Δ mexCD-oprJ; Δ mexEF-oprN	0.25			
Δ mexAB-oprM; Δ mexCD-oprJ	0.015	←		
Δ mexAB-oprM; Δ mexCD-oprJ	; 0.015	←		
Δ mexEF-oprN				
Lomovskaya <i>et al,</i> AAC (1999) 43:1340-1346				

Efflux and selection of resistance

Frequency of Levofloxacin-resistant mutants in Pseudomonas aeruginosa if deleting the efflux pump operons

Pump status	LVX MIC	Frequency of LVX- resistant mutants
WT	0.25	2 × 10 ⁷ - 4 × 10 ⁷
∆ mexAB-oprM	0.015	2 × 10 ⁷ - 4 × 10 ⁷
Δ mexCD-oprJ	0.25	2 × 10 ⁷ - 4 × 10 ⁷
$\Delta mexEF-oprN$	0.25	2 × 10 ⁷ - 4 × 10 ⁷
Δ mexAB-oprM; Δ mexEF-oprN	0.015	2 × 10 ⁷ - 10 ⁷
Δ mexCD-oprJ; Δ mexEF-oprN	0.25	2 × 10 ⁶
Δ mexAB-oprM; Δ mexCD-oprJ	0.015	1 × 10 ⁹
Δ mexAB-oprM; Δ mexCD-oprJ;	0.015	<1 × 10 ¹¹ +
Δ mexEF-oprN		

Lomovskaya *et al,* AAC (1999) 43:1340-1346

AND the selection of mutants in FQ target becomes undetectable when ALL pumps are disrupted

Most frequent antibiotic-pumps in procaryotes (1/2)

Resistance Nodulation Division (Gram -)

Most frequent antibiotic-pumps in procaryotes (2/2)

Major Facilitator Superfamily (Gram + and -)

The Mutant-prevention concentration (MPC) (1/3)

Effect of fluoroquinolone concentration on selection of resistant mutants of Mycobacterium bovis BCG and Staphylococcus aureus Dong YZ, Zhao XL, Domagala & Drlica-K

Antimicrob. Agents Chemother. 43: 1756-1758, 1999

- Mycobacterium bovis BCG and Staphylococcus aureus
- increasing concentrations of fluoroquinolones
 - a sharp drop, followed by a plateau and
 - a second sharp drop.

Bactericidal activity of FQs against *M. bovis*

GSK Asian PK/PD workshop -- Taipei, Taiwan, January 10th,

Mutant-prevention concentration (MPC) (2/3) ...

Effect of fluoroquinolone concentration on selection of resistant mutants of Mycobacterium bovis BCG and Staphylococcus aureus
Dong YZ, Zhao XL, Domagala & Drlica-K
Antimicrob. Agents Chemother. 43 : 1756-1758, 1999

00

The mutant prevention concentration (MPC) is about 10 times larger larger than the MIC99 for most FQ

BUT, a C-8-methoxy group lowers the MPC for N-1-cyclopropyl fluoroquinolones

Role of the C8-methoxy in decreasing MPC

Bactericidal activity of FQs against Mycobaterium bovis

Dong *et al*; AAC 43:1756-1758

9 - PK/PD and resistance

Peak concentrations as a tool to prevent emergence of resistance (MPC): using "PK / PD acceptable " MICs

Drug	Dosage	C _{max}	"PK/PD Bkpt"	expect.
	(mg/24h)	(mg/L)	(mg/L)	MPC
norfloxacin	800	2.4 *	0.2	~ 2.4
ciprofloxacin	500	2.4 *	0.2	~ 2.4
ofloxacin	400	3-4.5 *, +	• 0.4	~ 4.8
levofloxacin	500	5-6 *, +	0.8	
moxifloxacin	400	4.5 *	0.4	~ 1.4

* US prescrib. inf. (adult of 60 kg) of NOROXIN®, CIPRO®, FLOXIN®, LEVAQUIN®, and AVELOX®
 * first dose to equilibrium

Peak concentrations as a tool to prevent emergence of resistance (MPC): using "PK / PD acceptable " MICs

Drug	Dosage (mg/24h)	C _{max} (mg/L)	"PK/PD Bkpt" (mg/L)	expect. MPC
norfloxacin	800	2.4 *	0.2	~ 2.4
ciprofloxacin	500	2.4 *	0.2	~ 2.4
ofloxacin	400	3-4.5 *, -	⁺ 0.4	~ 4.8
levofloxacin	500	5-6 *, +	0.8	
moxifloxacin	400	4.5 *	0.4	~ 1.4
 * US prescrib. inf. (a * first dose to equilibr 	This is the C _{ma}	_{ax} you'd lik	e to obtain 🖭	d AVELOX®

Why would PK/PD be important for the prevention of resistance ?

- rate and intensity of the bactericidal effects
- minimizing the potential for acquisition and/or emergence of mechanisms of resistance
- dealing with populations of decreased susceptibility

Breakpoint issues ...

	PK/PD Bkpts (mg/L)			
Drug	Dosage (mg/24h)	AUC/MIC (24h)	peak / MIC	NCCLS Bkpts*
norfloxacin	800	0.1	0.2	< 4
ciprofloxacin	500	0.1	0.2	< 1
ofloxacin	400	0.2-0.4	0.3 - 0.4	< 2
levofloxacin	500	0.4	0.4 - 0.5	< 2
gatifloxacin	400	0.3	0.4	< 2
moxifloxacin	400	0.4	0.4	< 2

* US prescrib. inf. (adult of 60 kg) of NOROXIN®, CIPRO®, FLOXIN®, LEVAQUIN®, TEQUIN® and AVELOX®

How to apply this a given country (Belgium)?

Why do we fear rapid emergence of large resistance to levofloxacine in Belgium ?

% of sensitive strains

Why would telithromycin be potentially interesting in a given area (example = Belgium) ?

Evolution of resistance of S. pneumoniae to erythromycin

Pharmacodynamics of telithromycin (as based on FDA submission; april 2001)

Organism		MIC ₉₀	C _{max} /MIC _{90max}	AUC _{24h} /MIC _{90max}
S. pneumon	iae	< 0.008 - 0.25	7.6	33.2
S. pyogenes	5	< 0.015 - 0.06	31.6	138
M. catarrhal	is	0.12	15.8	69.1
L. pneumop	hila	0.03 - 0.12		
C. pneumon	niae	0.03 - 2	- 4114111-1-	
M. pneumor	niae	0.25 A	ACTIVITY WIII D	be good for I/L. but may
Mill Respiratory pathogens (North America) Number of enters Mill range (ug/mL) 50 90 wammonale 4467 50.008 - 0.02 9008 - 0.25 wammonale 519 50.008 - 0.03 0.013 - 0.06 genera 6 519 50.008 - 0.03 0.013 - 0.06 general- 5 1071 10 - 2.0 2.0 - 4.0 submedindi 4 728 0.06 0.12	Pharmacokinetics of Oral Telithromycin in Healthy Subjects 300 mg single dose 800 mg multiple dose (7 d) 4 1.0* [0.5-4] 5 0.04 5 0.03 5 0.03 6 0.5-4] 6 0.03 6 0.03 6 0.03 7 0.03 101 0.01 102 0.01 103 0.01 104 0.01 105 0.07 105 0.01 105 0.01 105 0.01 106 0.01 107 0.01 105 0.01 105 0.01 105 0.01 105 0.01 105 0.01 105 0.01 105 0.01 105 0.01 105 0.01	b h	become problematic for higher MICs	
eumophila 2 76 0.015 - 0.06 0.03 - 0.12 memorinis* 1 15 0.03 - 2.0 0.03 - 2.0 memorinise 1 49 0.12 0.25 / MCC	AUC _{vic230} (tig himL) 8.3 (31) T2.5 (43) L _{id26} (h) 7.2 (19) 9.8 (20) Data are mean (CV4s) [MaxMax], N = 18 * *			

http://www.fda.gov/ohrms/dockets/ac/01/slides/3746s_09_aventis/

But why do we also fear a rapid resistance to telithromycin in Belgium ?

■ Ery-S ■ Ery-r

This is where we are now ...

This is where Regulators and many others wish us to go ...

