Population-based approaches: Regulatory issues and Population simulations

Michael R. Jacobs, MD, PhD
Case Western Reserve University
University Hospitals of Cleveland
Cleveland, OH
Regulatory issues

- Regulatory agents require demonstration of safety and therapeutic non-inferiority to suitable comparator/s for licensing
- “Non-inferiority” in most RTIs is very easy to demonstrate as most RTIs are self-limiting

Population-based simulations

- In the absence of adequate data, computer simulations of outcome of infection can be determined using a statistical model that determined the outcome of infection based on MIC distributions and PK distributions – referred to as “Monte Carlo simulations”
- “Therapeutic outcome model”
Variation in antibiotic use in the European Union

"High use"

Outpatient antibiotic sales in 1997 in the European Union
*Includes sulphonamides, penicillinase-resistant penicillins, amphenicols, aminoglycosides, and glycopeptides.
Outpatient clinical studies in respiratory tract infections

- High-rate spontaneous resolution makes it difficult to show differences between agents.
- Bacteriologic outcome studies are not often performed due to necessity for invasive procedure (ear, sinus or lung tap) to obtain specimen.
- Most studies are therefore designed to show equivalent clinical outcome between established and new agents.
- Inadequacies of agents studied are therefore often not apparent.
Regulatory issues

- Regulatory agents require demonstration of safety and therapeutic non-inferiority to suitable comparator/s for licensing.
- Placebo-controlled studies are almost never conducted.
- Formulas used to calculate sample sizes needed in clinical studies contain assumptions about the outcome of the disease being studied.
- Formulas also contain values chosen to represent the difference between study arms that is considered “acceptable” and is typically set at 10% to 20%.
In a non-inferiority trial, assay sensitivity is not measured in the trial. That is, the trial itself does not show the study’s ability to distinguish active from inactive therapy. Assay sensitivity must, therefore, be deduced or assumed, based on historical experience showing sensitivity to drug effects, a close evaluation of study quality and, particularly important, the similarity of the current trial to trials that were able to distinguish the active control drug from placebo.

Assay sensitivity can be measured in an active control trial if there is an “internal standard,” a control vs placebo comparison as well as the control vs test drug comparison (i.e., a three-arm study).

RJ Temple, MD, CDER, FDA, Feb 19, 2002
Historical Evidence of Sensitivity to Drug Effects

To people's surprise, there are many effective drugs that cannot be said to have HESDE, i.e., that are not regularly superior to placebo in well-done studies of adequate size.

To illustrate, about 46% of well-done trials of effective antidepressants cannot distinguish drug from placebo. No one knows how to choose a population, sample size, or design that will alter this state.

RJ Temple, MD, CDER, FDA, Feb 19, 2002
Clinical Trial Implications:
Sample size per arm to achieve 80% power based on differences between study arms

R Albrecht, MD. CDER, FDA, Feb 19, 2002
Consequence to Patients

If accept a delta of 15% instead of delta of 10% as evidence of non-inferiority, the consequence is that

- the drug is potentially 5% less effective
- an extra 5000 patients may potentially fail therapy for each 100,000 patients treated

R Albrecht, MD. CDER, FDA, Feb 19, 2002
Why are conclusions of clinical trials apparently (sometimes and apparently) contradictory?

<table>
<thead>
<tr>
<th>Issue</th>
<th>Correct but Incomplete Conclusion</th>
<th>No Conclusions Possible</th>
<th>Conclusions of Poor Value (shed confusion…)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insufficient separation of covariables</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- only one or a few dosage regimens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Not enough true failures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Self-limiting diseases</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Study design</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intercurrent variables influencing outcome and not recognized as such</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insufficient or inappropriate collection of PK data</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Only “peaks” or troughs…</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H. Sun, ISAP-FDA Workshop, 1999
Regulatory issues

“Non-inferiority” in most RTIs is very easy to demonstrate as most RTIs are self-limiting.

Clinical studies of RTIs can be improved if patients are stratified by disease severity or other factors that have been shown to be associated with outcome:

- PORT criteria in CAP
- Stratification of AECB patients
- Age in acute otitis media
Patient Stratification in Community Acquired Pneumonia (CAP)
Stratified patients into 5 Pneumonia Severity Index (PSI) risk classes based on risk of mortality at 30 days.

PSI can be used to guide decision to hospitalize patients with CAP.

A PREDICTION RULE TO IDENTIFY LOW-RISK PATIENTS WITH COMMUNITY-ACQUIRED PNEUMONIA

The following were independently associated with mortality:

- An age of more than 50 years
- Five coexisting illnesses
 - neoplastic disease
 - congestive heart failure
 - cerebrovascular disease
 - renal disease
 - liver disease
- Five physical examination findings
 - Altered mental status
 - Pulse ≥125 per minute
 - Respiratory rate ≥30 per minute
 - Systolic blood pressure < 90 mm Hg
 - Temperature < 35°C or ≥ 40°C

Patients with community-acquired pneumonia

Is the patient more than 50 years of age?

Yes → Assign patient to risk class II–V according to step 2 of the prediction rule

No →

Does the patient have a history of any of the following coexisting conditions?
- Neoplastic disease
- Congestive heart failure
- Cerebrovascular disease
- Renal disease
- Liver disease

Yes → Assign patient to risk class II–V according to step 2 of the prediction rule

No →

Does the patient have any of the following abnormalities on physical examination?
- Altered mental status
- Pulse ≥ 125/minute
- Respiratory rate ≥ 30/minute
- Systolic blood pressure < 90 mm Hg
- Temperature < 35°C or ≥ 40°C

Yes → Assign patient to risk class II–V according to step 2 of the prediction rule

No → Assign patient to risk class I

PORT study Pneumonia Severity Index point allocation

<table>
<thead>
<tr>
<th>Demographic factor</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td></td>
</tr>
<tr>
<td>Men</td>
<td>Age (yr)</td>
</tr>
<tr>
<td>Women</td>
<td>Age (yr) -10</td>
</tr>
<tr>
<td>Nursing home resident</td>
<td>+10</td>
</tr>
<tr>
<td>Coexisting illnesses†</td>
<td></td>
</tr>
<tr>
<td>Neoplastic disease</td>
<td>+30</td>
</tr>
<tr>
<td>Liver disease</td>
<td>+20</td>
</tr>
<tr>
<td>Congestive heart failure</td>
<td>+10</td>
</tr>
<tr>
<td>Cerebrovascular disease</td>
<td>+10</td>
</tr>
<tr>
<td>Renal disease</td>
<td>+10</td>
</tr>
<tr>
<td>Physical-examination findings</td>
<td></td>
</tr>
<tr>
<td>Altered mental status‡</td>
<td>+20</td>
</tr>
<tr>
<td>Respiratory rate ≥ 30/min</td>
<td>+20</td>
</tr>
<tr>
<td>Systolic B press < 90 mmHg</td>
<td>+20</td>
</tr>
<tr>
<td>Temperature < 35°C or r ≥ 40°C</td>
<td>+15</td>
</tr>
<tr>
<td>Pulse ≥ 125/min</td>
<td>+10</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Laboratory and radiographic findings</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Arterial pH < 7.35</td>
<td>+30</td>
</tr>
<tr>
<td>Blood urea N ≥ 30 mg/dl</td>
<td>+20</td>
</tr>
<tr>
<td>(11 mmol/liter)</td>
<td></td>
</tr>
<tr>
<td>Sodium < 130 mmol/liter</td>
<td>+20</td>
</tr>
<tr>
<td>Glucose ≥ 250 mg/dl</td>
<td>+10</td>
</tr>
<tr>
<td>Hematocrit < 30%</td>
<td>+10</td>
</tr>
<tr>
<td>Arterial pO2 < 60 mm Hg or Pulseox < 90%</td>
<td>+10</td>
</tr>
<tr>
<td>Pleural effusion</td>
<td>+10</td>
</tr>
</tbody>
</table>

Neoplastic disease is defined as any cancer except basal- or squamous-cell cancer of the skin that was active at the time of presentation or diagnosed within one year of presentation. Liver disease is defined as a clinical or histologic diagnosis of cirrhosis or another form of chronic liver disease, such as chronic active hepatitis. Congestive heart failure is defined as systolic or diastolic ventricular dysfunction documented by history, physical examination, and chest radiograph, echocardiogram, multiple gated acquisition scan, or left ventriculogram. Cerebrovascular disease is defined as a clinical diagnosis of stroke or transient ischemic attack or stroke documented by magnetic resonance imaging or computed tomography. Renal disease is defined as a history of chronic renal disease or abnormal blood urea nitrogen and creatinine concentrations documented in the medical record. Altered mental status is defined as disorientation with respect to person, place, or time that is not known to be chronic, stupor, or coma.

PORT Study Pneumonia Severity Index classes and Mortality

<table>
<thead>
<tr>
<th>Class</th>
<th>Points</th>
<th>Mortality(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>na</td>
<td>0.1</td>
</tr>
<tr>
<td>II</td>
<td>=<70</td>
<td>0.6</td>
</tr>
<tr>
<td>III</td>
<td>71-90</td>
<td>2.8</td>
</tr>
<tr>
<td>IV</td>
<td>91-130</td>
<td>8.2</td>
</tr>
<tr>
<td>V</td>
<td>>130</td>
<td>29.6</td>
</tr>
<tr>
<td>All patients</td>
<td></td>
<td>10.6</td>
</tr>
</tbody>
</table>

Patient Stratification in Acute Otitis Media (AOM)
Correlation of clinical studies with antimicrobial efficacy in AOM

- Bacteriologic outcome during therapy and clinical outcome at end of therapy have been shown to be the most useful time points to assess therapy.
- Outcome by 30 days shows no relationship to treatment due to frequent new viral and bacterial infections.
- Outcome is worst in patients with risk factors:
 - <2 years old
 - Prior AOM
 - Prior antibiotics
 - Day care
 - Siblings
Effect of Age on Outcome of AOM

Bacteriologic failure rate in patients treated with various antibiotic regimens:

- 18% (39/222) if <18 months
- 1% (1/71) if 18–40 months

\[P < 0.001 \]

Amoxicillin vs Placebo in AOM

Effect of Age on Initial Clinical Failure

<table>
<thead>
<tr>
<th>Age</th>
<th>Amox</th>
<th>Placebo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age < 2 yrs</td>
<td>6.5%</td>
<td>9.8%</td>
</tr>
<tr>
<td>Age > 2 yrs</td>
<td>0.5%</td>
<td>5.5%</td>
</tr>
</tbody>
</table>

Kaleida et. al. Pediatrics 1991;87:466
Sample sizes required to detect differences between antibacterial drugs for acute otitis media

Comparison of bacteriologic versus clinical outcomes in trials of two drugs (half the patients would be in each arm of a study)

Bacteriologic efficacy of drug A compared with drug B

Azithromycin vs amox-clav in AOM: clinical outcome at end of treatment

<table>
<thead>
<tr>
<th></th>
<th>McLinn</th>
<th>Aronovitz</th>
<th>Khurana</th>
<th>Dagan</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean age (range) years</td>
<td>? (1-15)</td>
<td>4.0 (2-15)</td>
<td>5.7 (0.5-12)</td>
<td>1.3 (0.5-4)</td>
</tr>
<tr>
<td>N evaluable at EOT</td>
<td>553 (82%)</td>
<td>92 (54%)</td>
<td>444 (84%)</td>
<td>143 (60%)</td>
</tr>
<tr>
<td>P value for clin. outcome</td>
<td>0.64</td>
<td>0.10</td>
<td>0.42</td>
<td>0.023</td>
</tr>
</tbody>
</table>

No. of patients needed to show:

- **60% vs 90% bact. efficacy**
 - Amox-clav: 2000
 - Azithro: 800

- **30% vs 90% bact. efficacy**
 - Amox-clav: 542
 - Azithro: 234

- **800 clin/100 bact**
- **100 clin/30 bact**
Effect of study design on comparative efficacy of placebo and antimicrobials in AOM

Characteristics of patients included in study designs:

* Only patients younger than 2 years old are included, 70% of all cases are bacterial cases and only those with bacterial infections are included in the bacteriologic efficacy evaluation.

† Clinical failure occurs in only 40% of those with bacteriologic failure after 3 to 5 days of treatment; maximal clinical success occurs in 90% of patients because even with the best drugs, persistence of symptoms or newly acquired symptoms (mainly viral infections) will occur in up to 10% of patients.

‡ The 30% who were initially culture-negative also are included in this group. On the basis of clinical experience, patients improve quickly, even without treatment.

§ If some children >2 years of age and >3 years of age are included.

¶ In most studies, with clinical diagnosis only, up to 20% do not have acute otitis media but rather upper respiratory infections only.

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Bacteriologic Efficacy (%) in Culture-positive Cases (Days 4–6) – all patients under 2 years old*</th>
<th>Clinical Efficacy (Days 12–14) in culture positive patients – all patients under 2 years old † (%)</th>
<th>Clinical efficacy including Patients with Negative Baseline Culture (30%)‡ (%)</th>
<th>Clinical efficacy including 30% of Patients Older Than 2 yr and 10% Older Than 3 yr§ (%)</th>
<th>Clinical efficacy including 10–20% of Patients with Simple Upper Respiratory Tract Infection¶ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Placebo</td>
<td>30</td>
<td>76</td>
<td>> 80</td>
<td>> 85</td>
<td>≈ 90</td>
</tr>
<tr>
<td>Agent A</td>
<td>60</td>
<td>84</td>
<td>> 85</td>
<td>≈ 90</td>
<td>≈ 90</td>
</tr>
<tr>
<td>Agent B</td>
<td>90</td>
<td>≈ 90</td>
<td>≈ 90</td>
<td>≈ 90</td>
<td>≈ 90</td>
</tr>
</tbody>
</table>

Patient Stratification in Acute Exacerbations of Chronic Bronchitis
AECB Stratification Based on Exacerbation Characteristics

Increase in:
- dyspnea
- sputum volume
- sputum purulence

Type 1
All 3 present

Type 2
2 of 3 present

Type 3
1 of 3 present*

*plus upper respiratory tract infection in the prior 5 days, fever, increased wheezing, cough, and respiratory and/or heart rates.

Antibiotics in AECB

- 362 exacerbations in 173 patients were treated with either placebo or antibiotics (TMP/SMX, doxycycline or amoxicillin)

- Cardinal symptoms of exacerbation were increased dyspnea, sputum volume, sputum purulence

Anthonisen et al, Ann Intern Med 1987;106:196-204
Antibiotics in AECB

Exacerbations were classified as Type 1, 2 or 3 according to the number of cardinal symptoms

- **Type 1:** All 3 cardinal symptoms (increased dyspnea, sputum volume, sputum purulence)
- **Type 2:** 2 of the 3 present
- **Type 3:** 1 of the 3 symptoms plus URTI, fever, cough, wheeze or a 20% increase HR or RR

Anthonisen et al, Ann Intern Med 1987;106:196-204
Antibiotics in AECB

Results

% success

Difference predominantly in type 1 patients

Anthonisen et al, Ann Intern Med 1987;106:196-204
Antibiotics in AECB

Results

% deterioration in pulmonary function

Type of exacerbation

All	Type 1	Type 2	Type 3
Placebo | Antibiotic

Anthonisen et al, Ann Intern Med 1987;106:196-204

Difference predominantly in type 1 patients

p<0.05
Stratification Based on Patient Characteristics

Group 1 (acute viral bronchitis)
No previous respiratory problems

Group 2 (simple chronic bronchitis)
Age ≤65 years; <4 exacerbations/year; FEV₁ >50%

Group 3 (complicated chronic bronchitis)
Age ≥65 years; ≥4 exacerbations/year; FEV₁ <50%

Group 4 (complicated chronic bronchitis) Above criteria plus:
- congestive heart failure
- diabetes
- chronic renal failure
- chronic liver disease
- or other chronic disease

Antimicrobial Therapy for AECB

<table>
<thead>
<tr>
<th>Category</th>
<th>Probable Pathogen</th>
<th>Therapy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group 1</td>
<td>Viral</td>
<td>Symptomatic</td>
</tr>
<tr>
<td>Group 2</td>
<td>H. influenzae, S. pneumoniae, M. catarrhalis possibly atypical organisms</td>
<td>Doxycycline, newer macrolide newer cephalosporins</td>
</tr>
<tr>
<td>Group 3 & 4</td>
<td>As above with the possible addition of Pseudomonas spp Enterobacteriaceae, and other Gram-negative pathogens</td>
<td>Amoxicillin/clavulanate, fluoroquinolones*</td>
</tr>
</tbody>
</table>

*If at risk for infection with *Pseudomonas* spp, use ciprofloxacin.
Consequences of Inappropriate Guidelines: A Natural Experiment in Australia

- Australian government directive targeted at reducing amoxicillin/clavulanate (amox/clav) prescribing
- Recommendation that amox/clav should only be used in infections where resistance to amox was known or suspected
 - Nonsusceptible pneumococci (1997) amox/clav 0.3%, cefaclor 21.4%, erythromycin 16.3%, tetracycline 15.9%, TMP/SMX 45.8%
- No guidance given as to alternative to amox/clav
- Data collected on 4 GP practices, 34,242 patients and 15,303 antibiotic prescriptions for RTIs over 4 years (1994–1998)
Changes in Prescribing

- Shift away from best practice prescribing e.g., amoxicillin for otitis media and sinusitis
- Decrease in prescription share of amoxacillin/clavulanate: 13.8 ⇒ 8.6%
- Increase in prescription share particularly of macrolides*, tetracyclines, cephalexin and cefaclor

* Roxithromycin and erythromycin

Changes in Outcomes

- Amoxicillin/clavulanate use shifted to sicker patients (decreased use for sinusitis)
- Increased cost of care
- Management became more conservative:
 - More radiologic ($P=0.00001$) investigations
 - More pathologic ($P=0.005$) investigations
- More hospitalizations ($P=0.005$)

? conservatism, ? therapeutic failures

Changes in Outcomes

There was a shift away from best practice prescribing

There was a significant association between the rate and cost of process-of-care and patient outcomes and the decrease in amoxicillin/clavulanate share

This policy created unintended changes in prescribing behavior, increased cost of care and resulted in a trend towards poorer patient outcomes

Population based pharmacokinetics

- Product labelling gives mean PK values approved by regulatory agencies
- These values are typically obtained in healthy volunteers
- Values in actual patients can vary considerably from these values, and measurement in patients is desirable

Preston SL, Drusano GL et al. AAC 1998;42:1098-1104
Ambrose PG, Grasela D. ICAAC 1999
Population pharmacokinetics: examples of variations

\[C_{\text{max}} \text{ varies from 5-17 ug/ml} \]

H. Sun, ISAP-FDA Workshop, 1999
Monte Carlo simulation is a mathematical technique for numerically solving differential equations. The technique tends to be computer intensive, with many problems taking minutes or hours to solve on a high speed computer. For this reason, Monte Carlo simulation is avoided when simple solutions exist for a problem. Monte Carlo simulation, however, has the advantage that it is a "brute force" technique that will solve many problems for which no other solutions exist. Because many problems are highly complex, this "method of last resort" is used frequently.
Monte Carlo simulation is typically used to solve problems which require that one or more statistics of a probability distribution be calculated by:

- "randomly" generating 10,000 scenarios for the data sets being evaluated
- Determining what the values would be under each of the 10,000 scenarios
- Forming a histogram of those results. This represents a discrete approximation for the probability distribution of the data.
- This solution only yields an approximate answer. By using more scenarios—say 20,000 instead of 10,000—the precision of the result could be improved. Typically, the precision of a Monte Carlo simulation is proportional to the square root of the number of scenarios used.
Monte Carlo Simulation of Distribution of AUC: MIC Ratios of Gatifloxacin and Levofloxacin Against *S. pneumoniae*

- AUC values determined in adult patients enrolled in clinical studies
- MICs of 2000 isolates of *S. pneumoniae* from surveillance studies determined
- Monte Carlo simulation run on these data using a 5000 patient simulation randomly pairing AUC and MIC values
- A probability distribution is then generated that reflects the chance that a pharmacodynamic target will be achieved in a patient

Ambrose PG, Grasela D. ICAAC 1999
AUC values in acutely ill patients

Levofloxacin
500 mg dose
(N=172)

Gatifloxacin
400 mg dose
(N=64)

Preston SL, Drusano GL et al. AAC 1998;42:1098-1104
Ambrose PG, Grasela D. ICAAC 1999
AUC values in acutely ill patients

Levofloxacin 500 mg dose

(N=172)

Labeling: AUC=48 (34 free)

Preston SL, Drusano GL et at. AAC 1998;42:1098-1104

Ambrose PG, Grasela D. ICAAC 1999

AUC values in acutely ill patients

Preston SL, Drusano GL et al. AAC 1998;42:1098-1104
Ambrose PG, Grasela D. ICAAC 1999

Gatifloxacin 400 mg dose (N=64)

Labeling: AUC=34 (27 free)
S. pneumoniae MIC Distribution

Gatifloxacin and Levofloxacin

N=2000

Ambrose PG, Grasela D. ICAAC 1999
Jones RN. SENTRY Surveillance Program 1997
Monte Carlo Simulation of Distribution of AUC: MIC Ratios of Gatifloxacin and Levofloxacin Against *S. pneumoniae*

Ambrose PG, Grasela D. ICAAC 1999
Probability of Achieving Target AUC:MIC Ratio

Levofloxacin Vs *S. pneumoniae*

<table>
<thead>
<tr>
<th>Probability</th>
<th>Levofloxacin</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>0.045</td>
<td></td>
</tr>
<tr>
<td>0.04</td>
<td></td>
</tr>
<tr>
<td>0.035</td>
<td></td>
</tr>
<tr>
<td>0.03</td>
<td></td>
</tr>
<tr>
<td>0.025</td>
<td></td>
</tr>
<tr>
<td>0.02</td>
<td></td>
</tr>
<tr>
<td>0.015</td>
<td></td>
</tr>
<tr>
<td>0.01</td>
<td></td>
</tr>
<tr>
<td>0.005</td>
<td></td>
</tr>
</tbody>
</table>

Certainty is 80% from an AUC:MIC ratio from 30 to +infinity

Probability of Achieving Target AUC:MIC Ratio Gatifloxacin Vs S. pneumoniae

Certainty is 94% from an AUC:MIC ratio from 30 to +infinity

Using PK/PD parameters to develop treatment guidelines
ANTIMICROBIAL TREATMENT GUIDELINES FOR ACUTE BACTERIAL RHINOSINUSITIS

Sinus and Allergy Health Partnership

Supported by an educational grant from the Sinus and Allergy Health Partnership, an organization created through the joint efforts of the American Academy of Otolaryngic Allergy, the American Academy of Otolaryngology–Head and Neck Surgery, and the American Rhinologic Society.
Using PK/PD parameters to develop sinusitis treatment guidelines

Therapeutic outcome model developed based on:

- Prevalence of pathogens in acute sinusitis
- Spontaneous resolution of each pathogen
- Bacterial eradication of each pathogen based on susceptibility at PK/PD breakpoints
Microbiology of Acute Bacterial Rhinosinusitis (Adults)

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. pneum</td>
<td>20-43%</td>
</tr>
<tr>
<td>H. influenzae</td>
<td>22-35%</td>
</tr>
<tr>
<td>Strep spp.</td>
<td>3-9%</td>
</tr>
<tr>
<td>Anaerobes</td>
<td>0-9%</td>
</tr>
<tr>
<td>M. catarrhalis</td>
<td>2-10%</td>
</tr>
<tr>
<td>S. aureus</td>
<td>0-8%</td>
</tr>
</tbody>
</table>

Microbiology of Acute Bacterial Rhinosinusitis (Children)

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>S. pneum</td>
<td>25-30%</td>
</tr>
<tr>
<td>H. influenzae</td>
<td>15-20%</td>
</tr>
<tr>
<td>M. catarrhalis</td>
<td>15-20%</td>
</tr>
<tr>
<td>S. pyogenes</td>
<td>2-5%</td>
</tr>
<tr>
<td>Anaerobes</td>
<td>2-5%</td>
</tr>
<tr>
<td>Sterile</td>
<td>20-35%</td>
</tr>
</tbody>
</table>

Pharmacodynamic breakpoints for oral agents used for RTIs

<table>
<thead>
<tr>
<th>PK/PD breakpoint (µg/ml)</th>
<th>ALL ORGANISMS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amoxicillin</td>
<td>2</td>
</tr>
<tr>
<td>Amox/clav</td>
<td>2</td>
</tr>
<tr>
<td>Cefuroxime axetil</td>
<td>1</td>
</tr>
<tr>
<td>Cefprozil</td>
<td>1</td>
</tr>
<tr>
<td>Cefixime</td>
<td>0.5</td>
</tr>
<tr>
<td>Cefaclor</td>
<td>0.5</td>
</tr>
<tr>
<td>Loracarbef</td>
<td>0.5</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>0.12</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>0.25</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>NCCLS</th>
<th>PK/PD</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>S. pneumoniae</td>
<td>H. influenzae</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Amox/clav</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Cefuroxime axetil</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>Cefprozil</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Cefixime</td>
<td>–</td>
<td>1</td>
</tr>
<tr>
<td>Cefaclor</td>
<td>1</td>
<td>8</td>
</tr>
<tr>
<td>Loracarbef</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>0.5</td>
<td>4</td>
</tr>
<tr>
<td>Clarithromycin</td>
<td>0.25</td>
<td>8</td>
</tr>
</tbody>
</table>

Susceptibility of US Isolates at PK/PD breakpoints

<table>
<thead>
<tr>
<th>Agent</th>
<th>S. pneumoniae</th>
<th>H. influenzae</th>
<th>M. catarrhalis</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amox/clav</td>
<td>90</td>
<td>97</td>
<td>100</td>
</tr>
<tr>
<td>Amoxicillin</td>
<td>90</td>
<td>61</td>
<td>14</td>
</tr>
<tr>
<td>Cefaclor</td>
<td>27</td>
<td>2</td>
<td>5</td>
</tr>
<tr>
<td>Cefixime</td>
<td>57</td>
<td>99</td>
<td>100</td>
</tr>
<tr>
<td>Cefpodoxime</td>
<td>63</td>
<td>99</td>
<td>64</td>
</tr>
<tr>
<td>Cefprozil</td>
<td>64</td>
<td>18</td>
<td>6</td>
</tr>
<tr>
<td>Cefuroxime</td>
<td>64</td>
<td>79</td>
<td>37</td>
</tr>
<tr>
<td>Cefdinir‡</td>
<td>61</td>
<td>97</td>
<td>100</td>
</tr>
<tr>
<td>Azithromycin</td>
<td>67</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>Clindamycin*</td>
<td>89</td>
<td>NA</td>
<td>NA</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>76</td>
<td>20</td>
<td>96</td>
</tr>
<tr>
<td>Levofloxacin</td>
<td>99.8</td>
<td>100</td>
<td>99</td>
</tr>
<tr>
<td>TMP/SMX*</td>
<td>57</td>
<td>75</td>
<td>9</td>
</tr>
</tbody>
</table>

Sinusitis Therapeutic Outcome Model

Bacterial efficacy (%)

Bacterial infection

Total patient group

Sinusitis Therapeutic Outcome Model

Fluorquinolones

100% efficacy

Amoxicillin-clav.*

No treatment

Amoxicillin-clav.

100% efficacy

Doxycycline, Clindamycin

Cefpodoxime, Cefixime, Cefuroxime

No treatment

Clindamycin, Macrolides, TMP-SMX, Cefprozil

40

50

60

70

80

90

100

Bacterial infection

Total patient group

Pediatric

Adult

Antimicrobial Recommendations for Acute Sinusitis

Mild

Antibiotic Use in Prior 4 to 6 Weeks

No

Amox/clav

Amoxicillin

Cefpodoxime

Cefuroxime

Yes

Amox/clav

Amoxicillin

Cefpodoxime

Cefuroxime

Moderate

Antibiotic Use in Prior 4 to 6 Weeks

No

Amox/clav

Amoxicillin

Cefpodoxime

Cefuroxime

Yes

Fluoroquinolone*

Amox/clav

Amoxicillin

Cefpodoxime

Cefuroxime

Combination†

*Fluoroquinolone=gatifloxacin/levofloxacin/ moxifloxacin; currently not approved for use in children. †Amoxicillin or clindamycin plus cefixime.

Conclusions

- Determining the real efficacy of antibiotics is not easy to obtain as studies are designed to show "non-inferiority"
- Avoiding use of good agents may not be the best policy
- Statistical modeling can provide some additional information
- Therapeutic outcome models are very useful
- We need a better way to evaluate antibiotics, especially in RTIs