Pharmacodynamics: the concepts

• What is pharmacodynamics?
• Dose-response models
 – The yes/no model
 – The linear model
 – The sigmoidal model
• Influence of time

With the support of Wallonie-Bruxelles-International
What is pharmacodynamics?

what the drug does to the body ...

Pharmacodynamics
conc vs effect

Effect

Conc (log)
Pharmacokinetics

Pharmacodynamics

Dosage

Serum concentration varying over time

Concentration at the site of infection → Therapeutic effects

Concentration in non-target tissues → Toxic effects
Pharmacodynamics

- Concentration at the site of infection → **Therapeutic effects**
- Concentration in non-target tissues → **Toxic effects**

Pharmacokinetics

- Dosage → Serum concentration varying over time

- **Dosage**
Pharmacodynamics: the yes and no model

- sharp threshold
- maximal effect immediately observed

This is the model assumed by
- the breakpoints approach !! (S - R)
- the cured / non-cured clinical endpoint !!
Pharmacodynamics: the linear model...

- continuously increasing effect
- effect matches dosing

This is the model assumed by the "high dosing in severe infections" approach ...

→ the more you give, the more it must be active... No?
Pharmacodynamics: the sigmoidal dose-response model

- starting threshold
- dose-response in a given zone
- maximum reached

This is the classical pharmacological model and corresponds to reality.
Pharmacodynamics: the sigmoidal dose-response model

lowest limit of action
Pharmacodynamics: the sigmoidal dose-response model

This is where increasing the dose is useful

Lowest limit of action
Pharmacodynamics: the sigmoidal dose-response model

- **Lowest limit of action**: This is where increasing the dose is useful.
- **Maximal effect**: This is where you get your maximal effect.
Sigmoidal response: the importance of the shape of the curve

The "shape factor" describes the steepness of the response ...
Some antibiotics are steep, others are less steep...

β-lactams, vancomycin, …
- narrow dose-response zone
- tendency to yes/no

aminoglycosides, fluoroquinolones
- wide dose-response zone
- increasing the concentration causes more effect
Pharmacodynamics: influence of time...

All antibiotics are dependent on time...

![Graph showing the killing effect of antibiotics on bacterial growth over time](image)
Pharmacodynamics: influence of time...

But some kill so fast that time becomes unimportant.

With an aminoglycoside (tobramycin), or a fluoroquinolone (ciprofloxacin) a 4 log decrease is achieved in less than 4-6 h at 4 X the MIC.
Pharmacodynamics: influence of time ...

But some kill so fast that time becomes unimportant.

But with a β-lactam, you achieve only a 2 log decrease in 6 h,

... and it does not go much faster if you increase the concentration above 4 X the MIC.
Pharmacodynamics: concentration x time

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Dose Response</th>
<th>Influence of Time</th>
<th>Clinical Consequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-lactams (all)</td>
<td></td>
<td>Narrow</td>
<td>Expose must be prolonged</td>
</tr>
<tr>
<td>Glycopeptides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macrolides</td>
<td></td>
<td>Critical</td>
<td>High concentrations are unimportant</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td>Large</td>
<td>Limited</td>
<td>Concentrations are important</td>
</tr>
<tr>
<td>Fluoroquinolones</td>
<td></td>
<td></td>
<td>Time is not critical</td>
</tr>
</tbody>
</table>

- Exposure must be prolonged
- High concentrations are unimportant
- Concentrations are important
- Time is not critical
Some antibiotics are less powerful than others: look for E_{max}

Poorly bactericidal:
- vancomycin
- macrolides
- tetracyclines
But some antibiotics are more powerful than others
Some antibiotics are more powerful than others: look for E_{max}

Highly bactericidal:
- fluoroquinolones
- aminoglycosides
E max tells you how active you are …

- **Highly bactericidal**
 - fluoroquinolones
 - aminoglycosides

- **Poorly bactericidal**
 - vancomycin
 - macrolides
 - tetracyclines

Graph showing absolute antibacterial effect (killing in arbitrary units) vs. log C ng/ml.
This is where we are now ...

Dosing

PK
- C_{max}
- AUC
- half-life

PD
- dose response
- time
- E_{max}

Therapeutic effects

Toxic effects
This where we are now ...

PK
- C_{max}
- AUC
- half-life

PD
- dose response
- E_{max}
- time

Dosing

Therapeutic effects

Toxic effects

We will now see the methods used ...

Section 3 b