

The general Concepts of Pharmacokinetics

- clearance,
- Vd,
- half-life,
- AUC,
- bioavailability,
- protein binding

What is this jargon ? Is it useful ?

With the support of Wallonie-Bruxelles-International

Pharmacokinetics is speed!

The general Concepts of Pharmacokinetics (PK)

- C_{max},
- clearance,
- Vd,
- half-life,
- AUC,
- bioavailability,
- protein binding

Let us travel together !!

April 2011

What is pharmacokinetics ?

- " what the body does to the drug "
- the fate of the drug in terms of
 - Absorption
 - Distribution
 - Metabolism
 - Excretion
- the time course of drug and metabolite concentrations in the body

What is pharmacokinetics ?

- " what the body does to the drug "
- the fate of the drug in terms of
 - Absorption
 - Distribution
 - Metabolism
 - Excretion

 the time course of drug and metabolite concentrations in the body

What is PK for ?

 does it reach the target in sufficient amounts ?

• for long enough ?

does it each non-desired targets ?

The C_{max} is the highest concentration in plasma after administration ...

time

C_{max} ... is proportional to the dose ...

time

What is the significance of the C_{max}?

- A drug with a (too) low C_{max} may be ineffective if its activity is concentration-dependent
- A drug with a (too) high C_{max} may become toxic if toxicity is related to Cmax (this NOT always the case.... !)
- you have to adjust the dose to get the appropriate C_{max} !

Clearance (Cl)

What is the significance of the clearance ?

A drug with a fast clearance will not stay around for long ... and may require readminstration...

- But a drug may show a slow clearance because it is bound to proteins and therefore largely unavailable (see later ...)
- If clearance falls during treatment (or is abnormally low at the beginning of treatment), patient will be overdosed !!

Volume of distribution (V_d)

- Quantifies how the drug has access to the various compartments of the body
- relates drug concentration (C) in the blood to the amount of drug that has been introduced in the body (= Dose)

V_d = Dose / Concentration in blood

Think about the body as a large "bag" with compartments in which you drop a drug ...

If drug diffuses throughout the body ...

If the drug reaches only the plasma and the extracelular fluids ...

If drug accumulates in tissues...

Typical volumes of distribution of antibiotics

L/kg

- dicloxacillin 0.1 (serum only)
 gentamicin 0.2
 - (serum plus extracell. fluids)
- ciprofloxacin (fluids plus moder. accumul. in tissues)
- azithromycin

(marked accum. in tissues)

0.25

What is the clinical significance of the Vd?

 A drug with a small V_d will have high initial blood levels but will not reach tissues...

• A large V_d will cause low initial blood levels ...

 if patient-related, you will need to give more of the drug (e.g., burn patients)

 if drug-related, it may become ineffective in blood-related (invasive) infections

Half-life (t 1/2)

- Half-life is the time it takes for the concentration to fall to half of its previous value
- This is a parameter which is easy to measure, (just take a few blood samples...)

BUT ...

 it is secondary pharmacokinetic parameter because it depends on both the clearance AND the volume of distribution

Why is half half-life a secondary parameter ?

Why is half half-life a secondary parameter ?

What is useful in half-life for the clinician ?

Direct information as how serum concentrations will fall over time ...and reach a pre-set threshold ... if you know the C_{max} (i.e. your starting point)

 Direct, practical comparisons between drugs ... if sharing the same V_d ...

> You can compare β -lactams between themselves for half-life, ... BUT you CANNOT compare β -lactams (low Vd) and azithromycin (high Vd), e.g.

Area under the Curve (AUC)

Area under the Curve (AUC)

- combines
 - one parameter directly linked to the medical decision: the dose of the drug !
 - one parameter llinked to the drug AND the patient: the clearance ...
- its value is <u>independent</u> of the scheme of administration ...
- useful to assess the <u>total</u> drug exposure

24h-AUC / MIC of fluoroquinolones (p.o.)

Drug	Dosage	24h-AUC	
	(mg/24h)	(mg/L x h)	

norfloxacin	800	14 *, #	
ciprofloxacin	500	12 * P	
ofloxacin	400	31 to 66 *, +	
levofloxacin	500	47 *	
moxifloxacin	400	48 *	Much better !!

* US prescrib. inf. (adult of 60 kg) of NOROXIN®, CIPRO®, FLOXIN®, LEVAQUIN®, and AVELOX®

- [#] litterature data
- + first dose to equilibrium

Bioavailability

- quantifies ABSORPTION from the site fo administration to the blood
- is measured by comparing oral (or another mode of administration) to intravenous administration

A poor bioavailability reduces both C_{max} and AUC ... and thereby decreases the potential for efficacy !!!

A low bioavailability (F)reduces both C_{max} and AUC

time

Fluoroquinolones : bioavailability (p.o.) and C_{max}

Drug	Dosage	Bioav.	C _{max}
	(mg/24h)	(%)	(mg/L)
norfloxacin	800	~ 35	2.4 *
ciprofloxacin	500	~ 70	2.4 *
ofloxacin	400	~ 95	3-4.5 *, +
levofloxacin	500	~ 99	5-6 *, +
moxifloxacin	400	~ 90	4.5 *

* US prescrib. inf. (adult of 60 kg) of NOROXIN®, CIPRO®, FLOXIN®, LEVAQUIN®, and AVELOX®

+ first dose to equilibrium

Protein binding: it is (almost always) the free drug that acts ...

April 2011

Protein binding impairs and slows down drug distribution...

TOTAL drug concentration of ertapenem (a high protein binding β -lactam) in plasma and blister fluid after 3 days of treatement

But protein binding prolongs half-lilfe ...

This where we are ...

